1. install packages
install.packages("tidyverse")
library(tidyverse)
tidyverse_update()
##################
安装三个数据包
install.packages(c("nycflights13", "gapminder", "Lahman"))
tidyverse 包括ggplot2, tibble, tidyr, readr, purrr和 dplyr包
PART I Explore
CHAPTER 1: Data Visualization with ggplot2
以ggplot2包中的mpg数据为例,它是一个数据框,每行为一个数据,每列为一个观测。mpg包括38种车的数据。
# 查看该数据集
head(ggplot2::mpg)
displ:车发动机大小,hwy:车的燃油效率
- 用该数据集创造第一幅ggplot图
library(ggplot2)
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy))
该图表示发动机大小与燃油呈现负相关。
- ggplot() 函数产生最基础的坐标系统,然后可以在上面加图层,
# 空图层,背景,颜色,字体都设好了
ggplot(data = mpg)
# aes()将数字映射为图形
ggplot(data = mpg) + geom_point(aes(displ,hwy))
#查看mpg数据
dim(mpg)
head(mpg)
# 查看hwy和cyl的关系
ggplot(mpg,aes(hwy,cyl)) + geom_point()
这里提供了一个画图模板:
ggplot(data = <DATA>) +
<GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
Aesthetic Mappings
aesthetic美学的,在图中表示点的大小,颜色等
我们可以把点的颜色按某个数值分组,如class
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, color = class))
也可以按点的大小分组
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, size = class))
或者映射给透明度或者形状
# Top
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, alpha = class))
# Bottom
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, shape = class))
# ggplot一次只能用6个形状,这里有7个,所以SUV不显示了
我们可以手动定义几何类型
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy), color = "blue")
练习题:
1.为什么点不是蓝色的?
ggplot(data = mpg) +
geom_point(
mapping = aes(x = displ, y = hwy, color = "blue")
)
因为color放在映射里面了,映射自动从彩色里赋值。
ggplot(data = mpg) +
geom_point(
mapping = aes(x = displ, y =hwy, color = cty))
2.注意映射连续变量与分类变量的区别。如颜色连续变量为一个颜色从深到浅,分类变量为各个颜色的分类。
ggplot(data = mpg) +
geom_point(
mapping = aes(x = displ, y =hwy, color = displ))
4.一个变量有多个映射是可以的,但是造成了信息的冗余,一般不会这样做。
- stroke是映射什么的?
ggplot(mtcars, aes(wt, mpg)) +
geom_point(shape = 21, colour = "black", fill = "white", size = 5, stroke = 1)
stroke映射点的边框粗细。
ggplot(mpg, aes(x = displ, y = hwy, colour = displ < 5)) +
geom_point()
注意:R语法很容易出错,注意(),“”是否配对,如果运行R代码无反应,按Esc键退出。
Facets 分面
增加信息的方式一个是将变量给映射,另外一个方法是将分类变量给分面,从而将图分成几个小的面。
分面有两种函数,facet_wrap(~分类变量,nrow,ncol)这个函数放入一个分类变量。
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_wrap(~ class, nrow = 2)
facet_grid(a ~ b) 可以用两个组合变量来分面
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(drv ~ cyl)
facet_grid()函数如果只想用一个变量来分面,可以用.留空。
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(. ~ cyl)
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(drv ~ .)
练习题:
- 如果用连续型变量来分面会出现什么后果?
head(mpg)
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_wrap(~ cty, nrow = 2)
结果是将连续型变量转换为因子,每个因子都有一个分面。
2.该图中有空位子,表示什么意思?
ggplot(data = mpg) +
geom_point(mapping = aes(x = drv, y = cyl))
空点表示该位子无数值。
3.下面两个代码有何不同?
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(drv ~ .)
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(. ~ cyl)
.的位置代表不想用该变量进行分面。
4.用分面代替颜色映射的优势和劣势是什么?
一幅图中人眼可以识别的颜色不超过9种,分面可以区分更多的信息,但是不容易相互比较。
3.6 Geometric Objects 几何对象
几何对象是把数据用图形的方式映射出来
# left
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy))
# right
ggplot(data = mpg) +
geom_smooth(mapping = aes(x = displ, y = hwy))
每个几何对象函数都有对应的映射参数,但是具有独立性,有些不能通用
ggplot(data = mpg) +
geom_smooth(mapping = aes(x = displ, y = hwy, linetype = drv))
许多几何对象可以展示多组图形,ggplot2会自动分组,但是不展示图例。
ggplot(data = mpg) +
geom_smooth(mapping = aes(x = displ, y = hwy))
ggplot(data = mpg) +
geom_smooth(mapping = aes(x = displ, y = hwy, group = drv))
ggplot(data = mpg) +
geom_smooth(
mapping = aes(x = displ, y = hwy, color = drv),
show.legend = FALSE
)
ggplot2也可以展示多个图层
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
geom_smooth(mapping = aes(x = displ, y = hwy))
同一张图显示多个几何对象--局部映射和全局映射的区别,如有冲突,以局部变量为准。
# ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
# geom_point(mapping = aes(color = class)) +
# geom_smooth(
# data = filter(mpg, class == "subcompact"),
# se = FALSE
# )
filter设置geom_smooth几何对象的过滤,se表示标准差
练习题:
Exercise 3.6.2 该代码画图是什么样的?
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, colour = drv)) +
geom_point() +
geom_smooth(se = FALSE)
color作为全局变量传递给point和smooth,因此,这两个都画出来了。
Exercise 3.6.3
What does show.legend = FALSE do? What happens if you remove it? Why do you think I used it earlier in the chapter?
ggplot(data = mpg) +
geom_smooth(
mapping = aes(x = displ, y = hwy, colour = drv),
)
ggplot(data = mpg) +
geom_smooth(
mapping = aes(x = displ, y = hwy, colour = drv),
show.legend = FALSE)
- Re-create the R code necessary to generate the following graphs.
ggplot(mpg,aes(displ,hwy))+geom_point()+geom_smooth(se=F)
ggplot(mpg,aes(displ,hwy))+geom_point()+geom_smooth(aes(group=drv),se=F)
ggplot(mpg, aes(x = displ, y = hwy, colour = drv)) +
geom_point() +
geom_smooth(se = FALSE)
ggplot(mpg,aes(displ,hwy))+geom_point(aes(color=drv))+geom_smooth(se=F)
ggplot(mpg,aes(displ,hwy))+geom_point(aes(color=drv))+geom_smooth(aes(linetype=drv),se=F)
ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(size = 4, color = "white") +
geom_point(aes(colour = drv))
3.7 Statistical Transformations 统计变换
统计变换:绘图时用来计算新数据的算法叫做统计变换stat
每个几何对象函数都有一个默认的统计变换,每个统计变换函数都又一个默认的几何对象。
用几何对象函数geom_bar作直方图,默认统计变换是stat_count.
一般可以用默认的统计变换,以下情况要用新的统计变换:
1.覆盖默认的统计变换
- 直方图默认的统计变换是stat_count,也就是统计计数。当需要直接用原表格的数据作图时就会需要覆盖默认的。
library(tibble)
demo <- tribble(
~a, ~b,
"bar_1", 20,
"bar_2", 30,
"bar_3", 40
)
# 默认stat=count,这里改成 "identity"
ggplot(data = demo) +
geom_bar(
mapping = aes(x = a, y = b), stat = "identity"
)
2.覆盖从统计变换生成变量到图形属性的默认映射
直方图默认的y轴是x轴的计数。此例子中x轴是五种cut(切割质量),直方图自动统计了这五种质量的钻石的统计计数,当你不想使用计数,而是想显示各质量等级所占比例的时候就需要用到prop。
ggplot(diamonds,aes(cut,..prop..,group=1))+geom_bar()
#group=1的意思是把所有钻石作为一个整体,显示五种质量的钻石所占比例体现出来。
3.在代码中强调统计变换
以stat_summary为例。
ggplot(diamonds)+stat_summary(aes(cut,depth),
fun.ymin = min,
fun.ymax=max,
fun.y=median)
练习题:
1.stat_summary()默认的几何对象是什么?
stat_summary的默认几何图形是geom_pointrange,而geom_pointrange默认的统计变换却是identity
ggplot(diamonds) + geom_pointrange(aes(cut,depth),
stat = 'summary',
fun.ymin=min,
fun.ymax=max,
fun.y=median)
geom_col()与geom_bar()的区别
geom_col()的默认统计变换为identity(),geom_bar()默认为count()stat_smooth()计算变量为预测值,最低和最高置信区间及SE
geom_bar(aes(y = ..prop..))中group=1的设置?
默认分组是等于x的,分组是在组内执行
ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut, y = ..prop..))
ggplot(data = diamonds) +
geom_bar(
mapping = aes(x = cut, fill = color, y = ..prop..)
)
ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut, y = ..prop.., group = 1))
ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut, fill = color, y = ..prop.., group = color))
3.8 Position Adjustments
geom_bar的颜色可以用color和fill调整
ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut, color = cut))
ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut, fill = cut))
ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut, fill = clarity))
bar的位置有三个参数可以调整"identity", "dodge" or "fill"
"identity"直接显示
ggplot(diamonds,aes(cut,fill=clarity))+geom_bar(alpha=1/5,position = 'identity')
ggplot(diamonds,aes(cut,color=clarity))+geom_bar(fill=NA,position = 'identity')
"fill"堆叠式,x每个分组都为100%
ggplot(data = diamonds) +
geom_bar(
mapping = aes(x = cut, fill = clarity),
position = "fill"
)
"dodge" 并列式,一个放在另一个旁边
ggplot(data = diamonds) +
geom_bar(
mapping = aes(x = cut, fill = clarity),
position = "dodge"
)
position = "jitter" 添加点的随机扰动,使重复的点暴露出来。
ggplot(data = mpg) +
geom_point(
mapping = aes(x = displ, y = hwy),
position = "jitter"
)
?position_dodge, ?position_fill, ?position_identity, ?position_jitter, and ?posi
tion_stack.
ggplot(mtcars,aes(factor(cyl),fill=factor(vs))) +
geom_bar(position = position_dodge(preserve = 'total'))
练习题:
- geom_jitter()哪个参数控制扰动大小?
width,height从水平和垂直方向控制
3.对比geom_jitter() 和 geom_count()
#geom_jitter()对点添加随机扰动
ggplot(data = mpg, mapping = aes(x = cty, y = hwy)) +
geom_jitter()
#geom_count()重复的点越多,点越大
ggplot(data = mpg, mapping = aes(x = cty, y = hwy)) +
geom_count()
- geom_boxplot()默认的统计变换是什么?
ggplot(data = mpg, mapping = aes(x = drv, y = hwy,color=class)) +
geom_boxplot()
ggplot(data = mpg, aes(x = drv, y = hwy, colour = class)) +
geom_boxplot(position = "identity")
默认为position_dodge()
3.9 Coordinate Systems 坐标系统
ggplot2默认为笛卡尔坐标系,x和y轴是独立的
coord_flip() 调换x和y轴
ggplot(data = mpg, mapping = aes(x = class, y = hwy)) +
geom_boxplot()
ggplot(data = mpg, mapping = aes(x = class, y = hwy)) +
geom_boxplot() +
coord_flip()
coord_quickmap
为地图设置长宽比
此处需要加载maps包,否则会报错。
library(maps)
#如果报错则:install.packages("maps")
#library(maps)
nz <- map_data("nz")
ggplot(nz, aes(long, lat, group = group)) +
geom_polygon(fill = "white", colour = "black")
# geom_polygon 是多边形图
ggplot(nz, aes(long, lat, group = group)) +
geom_polygon(fill = "white", colour = "black") +
coord_quickmap()
coord_polar()极坐标系统
bar <- ggplot(data = diamonds) +
geom_bar(
mapping = aes(x = cut, fill = cut),
show.legend = FALSE,
width = 1
) +
theme(aspect.ratio = 1) +
labs(x = NULL, y = NULL)
bar + coord_flip()
bar + coord_polar()
#width = 1把柱形图中间的空去掉了,
ggplot(mpg, aes(x = factor(1), fill = drv)) +
geom_bar()
#theta = "y"是将角度按y轴变量来设置,如不设置,会出现中间空心原点
ggplot(mpg, aes(x = factor(1), fill = drv)) +
geom_bar(width = 1) +
coord_polar(theta = "y")
ggplot(mpg, aes(x = factor(1), fill = drv)) +
geom_bar(width = 1) +
coord_polar()
ggplot(diamonds) + geom_bar(aes(x=cut,fill=cut))+coord_polar()
#多组的bar图也能画出饼图
head(diamonds)
ggplot(diamonds,aes(cut,fill=color)) +
geom_bar(position = "fill") #注意position位置参数的设置,默认position = "identity"
ggplot(diamonds,aes(cut,fill=color)) +
geom_bar(position = "fill") +
coord_polar(theta = "y")
Exercise 3.9.2 lab()函数可以给图层增加x和y的标签和title
ggplot(data = mpg, mapping = aes(x = class, y = hwy)) +
geom_boxplot() +
coord_flip() +
labs(y = "Highway MPG", x = "", title = "Highway MPG by car class")
Exercise 3.9.4
coord_fixed()保持线为45度
p <- ggplot(data = mpg, mapping = aes(x = cty, y = hwy)) +
geom_point() +
geom_abline()
p
p + coord_fixed()
3.10 The Layered Grammar of Graphics
ggplot2通用模板
ggplot(data = <DATA>) + #数据集data
<GEOM_FUNCTION>( #几何对象geom
mapping = aes(<MAPPINGS>), #映射aes
stat = <STAT>, #统计变换stat
position = <POSITION> #位置调整position
) +
<COORDINATE_FUNCTION> + #坐标系统
<FACET_FUNCTION> #分面系统
图形构建的过程由以上五个指标构建,后面两个用于微调。
阅读推荐:
生信技能树公益视频合辑:学习顺序是linux,r,软件安装,geo,小技巧,ngs组学!
B站链接:https://m.bilibili.com/space/338686099
YouTube链接:https://m.youtube.com/channel/UC67sImqK7V8tSWHMG8azIVA/playlists
生信工程师入门最佳指南:https://mp.weixin.qq.com/s/vaX4ttaLIa19MefD86WfUA