二分图染色(判断是否二分图)

二分图又称作二部图,是图论中的一种特殊模型。 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A, j in B),则称图G为一个二分图。

二分图的另一种等价的说法是,可以把每个节点着以黑色和白色之一,使得每条边的两个端点颜色不同.不难发现,非连通的图是二分图当且仅当每个连通分量都是二分图,因此我们只考虑无向连通图。

#include <cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int MAXN=10010;
vector<int> graph[MAXN];
int color[MAXN];
int vis[MAXN];
bool DFS(int u)
{
    vis[u]=1;
    int len=graph[u].size();
    for(int j=0;j<len;j++)
    {
        int v=graph[u][j];
        if(vis[v]==0)
        {
            color[v]=color[u]^1;
            if(!DFS(v)) return false;
        }
        else if(color[u]==color[v]) return false;
    }
    return true;
}
int main()
{
    int t,n,m,a,b;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        memset(graph,0,sizeof(graph));
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d",&a,&b);
            graph[a].push_back(b);
            graph[b].push_back(a);
        }
        memset(color,0,sizeof(color));
        memset(vis,0,sizeof(vis));
        int flag=true;
        for(int i=1;i<=n;i++)
        {
            if(vis[i]==0)
            {
                if(!DFS(i))
                {
                    flag=false;
                    break;
                }
            }
        }
        if(flag) printf("Yes\n");//是二分图
        else printf("No\n");
    }
}

其实vis数组可以用color数组代替,color为0表示没访问过,color为1代表黑色结点,color为2为白色结点,那么颜色的转换可以表示为color(rev)=3-color

#include <cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int MAXN=10010;
vector<int> graph[MAXN];
int color[MAXN];
bool DFS(int u)
{
    int len=graph[u].size();
    for(int j=0;j<len;j++)
    {
        int v=graph[u][j];
        if(color[v]==0)
        {
            color[v]=3-color[u];
            if(!DFS(v)) return false;
        }
        else if(color[u]==color[v]) return false;
    }
    return true;
}
int main()
{
    int t,n,m,a,b;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        memset(graph,0,sizeof(graph));
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d",&a,&b);
            graph[a].push_back(b);
            graph[b].push_back(a);
        }
        memset(color,0,sizeof(color));
        int flag=true;
        for(int i=1;i<=n;i++)
        {
            if(color[i]==0)
            {
                if(!DFS(i))
                {
                    color[i]=1;
                    flag=false;
                    break;
                }
            }
        }
        if(flag) printf("Yes\n");//是二分图
        else printf("No\n");
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342

推荐阅读更多精彩内容

  • 第一章 绪论 什么是数据结构? 数据结构的定义:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。 第二章...
    SeanCheney阅读 5,732评论 0 19
  • https://zh.visualgo.net/graphds 浅谈图形结构https://zh.visualgo...
    狼之独步阅读 4,113评论 0 0
  • 课程介绍 先修课:概率统计,程序设计实习,集合论与图论 后续课:算法分析与设计,编译原理,操作系统,数据库概论,人...
    ShellyWhen阅读 2,244评论 0 3
  • 1 数据2 算法3 线性表4 栈5 队列6 串朴素模式匹配算法 -子串的定位操作:从主串中找到子串KMP模式匹配算...
    oldSix_Zhu阅读 1,481评论 0 4
  • 夜半入梦乡 忽现吾儿郎 畅想凌云志 把酒话家长 笑谈离别苦 泪水湿衣裳 亦欲去拭泪 惊醒他乡床 原是一场梦 吾儿已...
    陈晓依阅读 608评论 0 4