scrapy结合selenium进行动态加载页面内容爬取

动态页面与静态页面

比较常见的页面形式可以分为两种:

  • 静态页面
  • 动态页面

静态页面和动态页面的区别

使用requests进行数据获取的时候一般使用的是respond.text来获取网页源码,然后通过正则表达式提取出需要的内容。

例如:

import requests
response = requests.get('https://www.baidu.com')
print(response.text.encode('raw_unicode_escape').decode())
百度源代码.png

但是动态页面使用上述操作后发现,获取到的内容与实际相差很大。

例如我们打开如下页面:

https://www.aqistudy.cn/historydata/monthdata.php?city=北京

右键选择查看网页源代码

查看网页源代码.png

在网页源代码中查找页面中存在的一个数据:2014-02的PM10为155。

北京空气质量指数.png

这时打开F12查看Elements 可以看到155在元素中有显示

检查.png

综上基本可以明白静态页面和动态页面的区别了。

有两种方式可以获取动态页面的内容:

  • 破解JS,实现动态渲染
  • 使用浏览器模拟操作,等待模拟浏览器完成页面渲染

由于第一个比较困难所以选择方法二

需求分析

获取各个城市近年来每天的空气质量

  • 日期
  • 城市
  • 空气质量指数
  • 空气质量等级
  • pm2.5
  • pm10
  • so2
  • co
  • no2
  • o3

使用scrapy

scrapy操作的基本流程如下:

1.创建项目:scrapy startproject 项目名称
2.新建爬虫:scrapy genspider 爬虫文件名 爬虫基础域名
3.编写item
4.spider最后return item
5.在setting中修改pipeline配置
6.在对应pipeline中进行数据持久化操作

创建

打开命令行,输入scrapy startproject air_history ,创建一个名为air_history的scrapy项目

进入该文件夹,输入scrapy genspider area_spider "aqistudy.cn",可以发现在spiders文件夹下多了一个名为area_spider的py文件

文件目录结构大概如下:

.
├── air_history
│   ├── __init__.py
│   ├── items.py
│   ├── middlewares.py
│   ├── pipelines.py
│   ├── __pycache__
│   │   ├── __init__.cpython-36.pyc
│   │   └── settings.cpython-36.pyc
│   ├── settings.py
│   └── spiders
│       ├── area_spider.py
│       ├── __init__.py
│       └── __pycache__
│           └── __init__.cpython-36.pyc
└── scrapy.cfg

编写item

根据需求编写item如下,spider最后return item,把值传递给它

import scrapy

class AirHistoryItem(scrapy.Item):
    # define the fields for your item here like:
    data = scrapy.Field() #日期
    city = scrapy.Field() #城市
    aqi = scrapy.Field() #空气质量指数
    level = scrapy.Field() #空气质量等级
    pm2_5 = scrapy.Field() #pm2.5
    pm10 = scrapy.Field() #pm10
    so2 = scrapy.Field() #so2
    co = scrapy.Field() #co
    no2 = scrapy.Field() #no2
    o3 = scrapy.Field()  #o3

编写爬虫

首先可以得知首页是https://www.aqistudy.cn/historydata/

所以将它赋值给一个名为base_url的变量,方便后续使用

自动创建的爬出中携带了爬虫的名字,这个name在启动爬虫的时候需要用到,现在暂时用不到

name = 'area_spider'
allowed_domains = ['aqistudy.cn']  # 爬取的域名,不会超出这个顶级域名
base_url = "https://www.aqistudy.cn/historydata/"
start_urls = [base_url]

城市信息

进入首页之后可以看到一大批的城市信息,所以我们第一步就是获取有哪些城市

def parse(self, response):
    print('爬取城市信息....')
    url_list = response.xpath("//div[@class='all']/div[@class='bottom']/ul/div[2]/li/a/@href").extract()  # 全部链接
    city_list = response.xpath("//div[@class='all']/div[@class='bottom']/ul/div[2]/li/a/text()").extract()  # 城市名称
    for url, city in zip(url_list, city_list):
        yield scrapy.Request(url=url, callback=self.parse_month, meta={'city': city})

使用插件XPath Helper可以对xpath进行一个测试,看看定位的内容是否正确

xpath.png

随意点击一个地区可以发现url变为https://www.aqistudy.cn/historydata/monthdata.php?city=北京

所以url_list获取到的是需要进行拼接的内容monthdata.php?city=城市名称

city_list的最后部分是text()所以它拿到的是具体的文本信息

将获取到的url_list和city_list逐个传递给scrapy.Request其中url是需要继续爬取的页面地址,city是item中需要的内容,所以将item暂时存放在meta中传递给下个回调函数self.parse_month

月份信息

def parse_month(self, response):
    print('爬取{}月份...'.format(response.meta['city']))
    url_list = response.xpath('//tbody/tr/td/a/@href').extract()
    for url in url_list:
        url = self.base_url + url
        yield scrapy.Request(url=url, callback=self.parse_day, meta={'city': response.meta['city']})

此步操作获取了每个城市的全部月份信息,并拿到了每个月份的url地址。把上面传递下来的city继续向下传递

最终数据

获取到最终的URL之后,把item实例化,然后完善item字典并返回item

def parse_day(self, response):
    print('爬取最终数据...')
    item = AirHistoryItem()
    node_list = response.xpath('//tr')
    node_list.pop(0)  # 去除第一行标题栏
    for node in node_list:
        item['data'] = node.xpath('./td[1]/text()').extract_first()
        item['city'] = response.meta['city']
        item['aqi'] = node.xpath('./td[2]/text()').extract_first()
        item['level'] = node.xpath('./td[3]/text()').extract_first()
        item['pm2_5'] = node.xpath('./td[4]/text()').extract_first()
        item['pm10'] = node.xpath('./td[5]/text()').extract_first()
        item['so2'] = node.xpath('./td[6]/text()').extract_first()
        item['co'] = node.xpath('./td[7]/text()').extract_first()
        item['no2'] = node.xpath('./td[8]/text()').extract_first()
        item['o3'] = node.xpath('./td[9]/text()').extract_first()
        yield item

使用中间件实现selenium操作

打开中间件文件middlewares.py

由于我是在服务器上进行爬取,所以我选择使用谷歌的无界面浏览器chrome-headless

from selenium import webdriver
from selenium.webdriver.chrome.options import Options

chrome_options = Options()
chrome_options.add_argument('--headless')  # 使用无头谷歌浏览器模式
chrome_options.add_argument('--disable-gpu')
chrome_options.add_argument('--no-sandbox')
# 指定谷歌浏览器路径
webdriver.Chrome(chrome_options=chrome_options,executable_path='/root/zx/spider/driver/chromedriver')

然后进行页面渲染后的源码获取

request.url是传递到中间件的url,由于首页是静态页面,所以首页不进行selenium操作

if request.url != 'https://www.aqistudy.cn/historydata/':
    self.driver.get(request.url)
    time.sleep(1)
    html = self.driver.page_source
    self.driver.quit()
    return scrapy.http.HtmlResponse(url=request.url, body=html.encode('utf-8'), encoding='utf-8',request=request)

后续的操作也很简单,最后将获取到的内容正确编码后返回给爬虫的下一步

middlewares全部代码

from scrapy import signals
import scrapy
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
import time


class AreaSpiderMiddleware(object):
    def process_request(self, request, spider):
        chrome_options = Options()
        chrome_options.add_argument('--headless')  # 使用无头谷歌浏览器模式
        chrome_options.add_argument('--disable-gpu')
        chrome_options.add_argument('--no-sandbox')
        # 指定谷歌浏览器路径
        self.driver = webdriver.Chrome(chrome_options=chrome_options,executable_path='/root/zx/spider/driver/chromedriver')
        if request.url != 'https://www.aqistudy.cn/historydata/':
            self.driver.get(request.url)
            time.sleep(1)
            html = self.driver.page_source
            self.driver.quit()
            return scrapy.http.HtmlResponse(url=request.url, body=html.encode('utf-8'), encoding='utf-8',
                                            request=request)

使用下载器保存item内容

修改pipelines.py进行文件的存储

import json

class AirHistoryPipeline(object):
    def open_spider(self, spider):
        self.file = open('area.json', 'w')

    def process_item(self, item, spider):
        context = json.dumps(dict(item),ensure_ascii=False) + '\n'
        self.file.write(context)
        return item

    def close_spider(self,spider):
        self.file.close()

修改settings文件使中间件,下载器生效

打开settings.py文件

修改以下内容:DOWNLOADER_MIDDLEWARES使刚才写的middlewares中间件中的类,ITEM_PIPELINES是pipelines中的类

BOT_NAME = 'air_history'
SPIDER_MODULES = ['air_history.spiders']
NEWSPIDER_MODULE = 'air_history.spiders'

USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/65.0.3325.181 Safari/537.36'

DOWNLOADER_MIDDLEWARES = {
   'air_history.middlewares.AreaSpiderMiddleware': 543,
}

ITEM_PIPELINES = {
   'air_history.pipelines.AirHistoryPipeline': 300,
}

运行

使用scrapy crawl area_spider就可以运行爬虫

结果.png

spider全部代码

# -*- coding: utf-8 -*-
import scrapy
from air_history.items import AirHistoryItem


class AreaSpiderSpider(scrapy.Spider):
    name = 'area_spider'
    allowed_domains = ['aqistudy.cn']  # 爬取的域名,不会超出这个顶级域名
    base_url = "https://www.aqistudy.cn/historydata/"
    start_urls = [base_url]

    def parse(self, response):
        print('爬取城市信息....')
        url_list = response.xpath("//div[@class='all']/div[@class='bottom']/ul/div[2]/li/a/@href").extract()  # 全部链接
        city_list = response.xpath("//div[@class='all']/div[@class='bottom']/ul/div[2]/li/a/text()").extract()  # 城市名称
        for url, city in zip(url_list, city_list):
            url = self.base_url + url
            yield scrapy.Request(url=url, callback=self.parse_month, meta={'city': city})

    def parse_month(self, response):
        print('爬取{}月份...'.format(response.meta['city']))
        url_list = response.xpath('//tbody/tr/td/a/@href').extract()
        for url in url_list:
            url = self.base_url + url
            yield scrapy.Request(url=url, callback=self.parse_day, meta={'city': response.meta['city']})

    def parse_day(self, response):
        print('爬取最终数据...')
        item = AirHistoryItem()
        node_list = response.xpath('//tr')
        node_list.pop(0)  # 去除第一行标题栏
        for node in node_list:
            item['data'] = node.xpath('./td[1]/text()').extract_first()
            item['city'] = response.meta['city']
            item['aqi'] = node.xpath('./td[2]/text()').extract_first()
            item['level'] = node.xpath('./td[3]/text()').extract_first()
            item['pm2_5'] = node.xpath('./td[4]/text()').extract_first()
            item['pm10'] = node.xpath('./td[5]/text()').extract_first()
            item['so2'] = node.xpath('./td[6]/text()').extract_first()
            item['co'] = node.xpath('./td[7]/text()').extract_first()
            item['no2'] = node.xpath('./td[8]/text()').extract_first()
            item['o3'] = node.xpath('./td[9]/text()').extract_first()
            yield item
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,013评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,205评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,370评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,168评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,153评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,954评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,271评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,916评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,382评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,877评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,989评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,624评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,209评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,199评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,418评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,401评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,700评论 2 345

推荐阅读更多精彩内容