一,常用的匹配规则
匹配符 | 说明 |
---|---|
\w | 匹配字母数字及下划线 |
\W | 匹配非字母数字及下划线 |
\s | 匹配任意空白字符,等价于 [\t\n\r\f] |
\S | 匹配任意非空字符 |
\d | 匹配任意数字,等价于 [0-9] |
\D | 匹配任意非数字 |
\A | 匹配字符串开始 |
\Z | 匹配字符串结束,如果是存在换行,只匹配到换行前的结束字符串 |
\z | 匹配字符串结束 |
\G | 匹配最后匹配完成的位置 |
\n | 匹配一个换行符 |
\t | 匹配一个制表符 |
^ | 匹配字符串的开头 |
$ | 匹配字符串的末尾。 |
. | 匹配任意字符,除了换行符,当re.DOTALL标记被指定时,则可以匹配包括换行符的任意字符。 |
[...] | 用来表示一组字符,单独列出:[amk] 匹配 'a','m'或'k' |
[^...] | 不在[]中的字符:[^abc] 匹配除了a,b,c之外的字符。 |
* | 匹配0个或多个的表达式 |
+ | 匹配1个或多个的表达式 |
? | 匹配0个或1个由前面的正则表达式定义的片段,非贪婪方式 |
{n} | 精确匹配n个前面表达式: (abc){2} ==>abcabc |
{n,m} | 匹配 n 到 m 次由前面的正则表达式定义的片段,贪婪方式 |
() | 匹配括号内的表达式,也表示一个组 |
alb | l代表左右表达式任意匹配一个 |
(?P<name>...) | 分组,除了原有的编号外,再指定一个额外的别名 |
(?P=name) | 引用别名为<name>的分组匹配到的字符串 |
二,re模块
compile()
编译正则表达式模式,返回一个对象的模式。(可以把那些常用的正则表达式编译成正则表达式对象,这样可以提高一点效率。)
格式:
re.compile(pattern,flags=0)
pattern: 编译时用的表达式字符串。
标志 | 含义 |
---|---|
re.S(DOTALL) | 使.匹配包括换行在内的所有字符 |
re.I(IGNORECASE) | 使匹配对大小写不敏感 |
re.L(LOCALE) | 做本地化识别(locale-aware)匹配,法语等 |
re.M(MULTILINE) | 多行匹配,影响^和$ |
re.X(VERBOSE) | 该标志通过给予更灵活的格式以便将正则表达式写得更易于理解 |
re.U | 根据Unicode字符集解析字符,这个标志影响\w,\W,\b,\B |
flags 编译标志位,用于修改正则表达式的匹配方式,如:是否区分大小写,多行匹配等。常用的flags有:
标志 | 含义 |
---|---|
re.S(DOTALL) | 使.匹配包括换行在内的所有字符 |
re.I(IGNORECASE) | 使匹配对大小写不敏感 |
re.L(LOCALE) | 做本地化识别(locale-aware)匹配,法语等 |
re.M(MULTILINE) | 多行匹配,影响^和$ |
re.X(VERBOSE) | 该标志通过给予更灵活的格式以便将正则表达式写得更易于理解 |
re.U | 根据Unicode字符集解析字符,这个标志影响\w,\W,\b,\B |
match()
match()
方法,我们向这个方法传入要匹配的字符串以及正则表达式,就可以来检测这个正则表达式是否匹配字符串了。
match()
方法会尝试从字符串的起始位置匹配正则表达式,如果匹配,就返回匹配成功的结果,如果不匹配,那就返回None。
import re
content ='Hello 123 4567 World_This is a Regex Demo'
print(len(content))
result = re.match('^Hello\s\d\d\d\s\d{4}\s\w{10}',content)
print(result) #打印匹配的结果
print(result.group()) #打印匹配到的字符串
print(result.span()) #打印匹配到的范围
运行结果:
41
<_sre.SRE_Match object at 0x0000000004C40E00>
Hello 123 4567 World_This
(0, 25)
这里我们首先声明了一个字符串,包含英文字母、空白字符,数字等等内容,接下来我们写了一个正则表达式^Hello\s\d\d\d\s\d{4}\s\w{10}
来匹配这个长字符串。
开头的^
是匹配字符串的开头,也就是以Hello
开头,然后\s
匹配空白字符,用来匹配目标字符串的空格,\d
匹配数字,三个\d
匹配123
,然后再写一个\s
匹配空格,后面还有4567
,其实我们依然可以用四个\d
来匹配,但是这么写起来比较繁琐,所以在后面可以跟{4}
代表匹配前面的字符四次,也就是匹配四个数字,这样也可以完成匹配。然后再紧接着一个空白字符\s
,然后\w{10}
匹配10个字母及下划线,正则表达式到此为止就结束了。
我们调用match()
方法,第一个参数传入了正则表达式,第二个参数传入了要匹配的字符串。
打印输出结果,可以看到结果是SRE_Match对象,证明成功匹配,他有两个方法,group()
方法可以输出匹配到的内容,结果是Hello 123 4567 World_This
,这刚好是我们正则表达式所匹配出来的内容。span()
方法可以输出匹配的范围,结果是(0, 25)
。
search()
re.search函数会在字符串内查找模式匹配,只要找到第一个匹配然后返回,如果字符串没有匹配,则返回None。
print(re.search('com','www.4comrunoob.5com').group())
运行结果:
4com
注:match和search一旦匹配成功,就是一个match object对象,而match object对象有以下方法:
group() 返回被 RE 匹配的字符串
start() 返回匹配开始的位置
end() 返回匹配结束的位置
span() 返回一个元组包含匹配 (开始,结束) 的位置
group() 返回re整体匹配的字符串,可以一次输入多个组号,对应组号匹配的字符串。
a. group()返回re整体匹配的字符串,
b. group (n,m) 返回组号为n,m所匹配的字符串,如果组号不存在,则返回indexError异常
c.groups()groups() 方法返回一个包含正则表达式中所有小组字符串的元组,从 1 到所含的小组号,通常groups()不需要参数,返回一个元组,元组中的元就是正则表达式中定义的组。
import re
a = "123abc456"
print(re.search("([0-9]*)([a-z]*)([0-9]*)",a).group(0)) #123abc456,返回整体
print(re.search("([0-9]*)([a-z]*)([0-9]*)",a).group(1)) #123
print(re.search("([0-9]*)([a-z]*)([0-9]*)",a).group(2)) #abc
print(re.search("([0-9]*)([a-z]*)([0-9]*)",a).group(3)) #456
group(1) 列出第一个括号匹配部分,group(2) 列出第二个括号匹配部分,group(3) 列出第三个括号匹配部分。
findall()
re.findall遍历匹配,可以获取字符串中所有匹配的字符串,返回一个列表。
p = re.compile(r'\d+')
print(p.findall('o1n2m3k4'))
运行结果:
['1', '2', '3', '4'] #返回一个列表
tt = 'Tina is a good girl, she is cool, clever, and so on...'
rr = re.compile(r'\w*oo\w')
print(rr.findall(tt))
print(re.findall(r'(\w)*oo(\w)',tt))
运行结果:
['good', 'cool']
[('g', 'd'), ('c', 'l')]
finditer()
搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。找到 RE 匹配的所有子串,并把它们作为一个迭代器返回。
iter = re.finditer(r'\d+','12 drumm44ers drumming, 11 ... 10 ...')
for i in iter:
print(i)
print(i.group())
print(i.span())
执行结果如下:
<_sre.SRE_Match object; span=(0, 2), match='12'>
12
(0, 2)
<_sre.SRE_Match object; span=(8, 10), match='44'>
44
(8, 10)
<_sre.SRE_Match object; span=(24, 26), match='11'>
11
(24, 26)
<_sre.SRE_Match object; span=(31, 33), match='10'>
10
(31, 33)
split()
按照能够匹配的子串将string分割后返回列表。
可以使用re.split来分割字符串,如:re.split(r'\s+', text);将字符串按空格分割成一个单词列表。
print(re.split('\d+','one1two2three3four4five5'))
执行结果如下:
['one', 'two', 'three', 'four', 'five', '']
sub()
使用re替换string中每一个匹配的子串后返回替换后的字符串。
import re
text = "JGood is a handsome boy, he is cool, clever, and so on..."
print(re.sub(r'\s+', '-', text))
执行结果如下:
JGood-is-a-handsome-boy,-he-is-cool,-clever,-and-so-on...
其中第二个函数是替换后的字符串;本例中为'-'
第四个参数指替换个数。默认为0,表示每个匹配项都替换。
re.match与re.search与re.findall的区别:
e.match只匹配字符串的开始,如果字符串开始不符合正则表达式,则匹配失败,函数返回None;而re.search匹配整个字符串,直到找到一个匹配。
a=re.search('[\d]',"abc33").group()
print(a)
p=re.match('[\d]',"abc33")
print(p)
b=re.findall('[\d]',"abc33")
print(b)
执行结果:
3
None
['3', '3']
_贪婪匹配与非贪婪匹配
?,+?,??,{m,n}? 前面的,+,?等都是贪婪匹配,也就是尽可能匹配,后面加?号使其变成惰性匹配
a = re.findall(r"a(\d+?)",'a23b')
print(a)
b = re.findall(r"a(\d+)",'a23b')
print(b)
执行结果:
['2']
['23']
a = re.match('<(.*)>','<H1>title<H1>').group()
print(a)
b = re.match('<(.*?)>','<H1>title<H1>').group()
print(b)
执行结果:
<H1>title<H1>
<H1>
a = re.findall(r"a(\d+)b",'a3333b')
print(a)
b = re.findall(r"a(\d+?)b",'a3333b')
print(b)
执行结果如下:
['3333']
['3333']
#######################
这里需要注意的是如果前后均有限定条件的时候,就不存在什么贪婪模式了,非匹配模式失效。