什么是LLVM
LLVM项目是模块化、可重用的编译器以及工具链技术的集合。
美国计算机协会 (ACM) 将其2012 年软件系统奖项颁给了LLVM,之前曾经获得此奖项的软件和技术包括:Java、Apache、 Mosaic、the World Wide Web、Smalltalk、UNIX、Eclipse等等
创始人:Chris Lattner,亦是Swift之父
备注:有些文章把LLVM当做Low Level Virtual Machine(低级虚拟机)的缩写简称,官方描述如下
The name "LLVM" itself is not an acronym; it is the full name of the project. “LLVM”这个名称本身不是首字母缩略词; 它是项目的全名。
传统的编译器架构
传统编译器架构
Frontend:前端
词法分析、语法分析、语义分析、生成中间代码
Optimizer:优化器
中间代码优化
Backend:后端
生成机器码
LLVM架构
LLVM架构
不同的前端后端使用统一的中间代码LLVM Intermediate Representation (LLVM IR)
如果需要支持一种新的编程语言,那么只需要实现一个新的前端
如果需要支持一种新的硬件设备,那么只需要实现一个新的后端
优化阶段是一个通用的阶段,它针对的是统一的LLVM IR,不论是支持新的编程语言,还是支持新的硬件设备,都不需要对优化阶段做修改
相比之下,GCC的前端和后端没分得太开,前端后端耦合在了一起。所以GCC为了支持一门新的语言,或者为了支持一个新的目标平台,就 变得特别困难
LLVM现在被作为实现各种静态和运行时编译语言的通用基础结构(GCC家族、Java、.NET、Python、Ruby、Scheme、Haskell、D等)
什么是Clang
LLVM项目的一个子项目,基于LLVM架构的C/C++/Objective-C编译器前端。
相比于GCC,Clang具有如下优点
编译速度快:在某些平台上,Clang的编译速度显著的快过GCC(Debug模式下编译OC速度比GGC快3倍)
占用内存小:Clang生成的AST所占用的内存是GCC的五分之一左右
模块化设计:Clang采用基于库的模块化设计,易于 IDE 集成及其他用途的重用
诊断信息可读性强:在编译过程中,Clang 创建并保留了大量详细的元数据 (metadata),有利于调试和错误报告
设计清晰简单,容易理解,易于扩展增强
Clang与LLVM关系
Clang与LLVM
LLVM整体架构,前端用的是clang,广义的LLVM是指整个LLVM架构,一般狭义的LLVM指的是LLVM后端(包含代码优化和目标代码生成)。
源代码(c/c++)经过clang--> 中间代码(经过一系列的优化,优化用的是Pass) --> 机器码
OC源文件的编译过程
这里用Xcode创建一个Test项目,然后cd到main.m的上一路径。
命令行查看编译的过程:$ clang -ccc-print-phases main.m
$ clang -ccc-print-phases main.m 0: input,"main.m", objective-c1: preprocessor, {0}, objective-c-cpp-output2: compiler, {1}, ir3: backend, {2}, assembler4: assembler, {3}, object5: linker, {4}, image6:bind-arch,"x86_64", {5}, image
0.找到main.m文件
1.预处理器,处理include、import、宏定义
2.编译器编译,编译成ir中间代码
3.后端,生成目标代码
4.汇编
5.链接其他动态库静态库
6.编译成适合某个架构的代码
查看preprocessor(预处理)的结果:$ clang -E main.m
这个命令敲出,终端就会打印许多信息,大致如下:
# 1"main.m"# 1"<built-in>"1# 1"<built-in>"3# 353"<built-in>"3# 1"<command line>"1# 1"<built-in>"2# 1"main.m"2...intmain(intargc,constchar* argv[]) {@autoreleasepool{NSLog(@"Hello, World!");}return0;}
词法分析
词法分析,生成Token: $ clang -fmodules -E -Xclang -dump-tokens main.m
将代码分成一个个小单元(token)
举例如下:
voidtest(inta,intb){intc = a + b -3; }
void'void'[StartOfLine] Loc=identifier'test'[LeadingSpace] Loc=l_paren'('Loc=int'int'Loc=identifier'a'[LeadingSpace] Loc=comma','Loc=int'int'[LeadingSpace] Loc=identifier'b'[LeadingSpace] Loc=r_paren')'Loc=l_brace'{'Loc=int'int'[StartOfLine] [LeadingSpace] Loc=identifier'c'[LeadingSpace] Loc=equal'='[LeadingSpace] Loc=identifier'a'[LeadingSpace] Loc=plus'+'[LeadingSpace] Loc=identifier'b'[LeadingSpace] Loc=minus'-'[LeadingSpace] Loc=numeric_constant'3'[LeadingSpace] Loc=semi';'Loc=r_brace'}'[StartOfLine] Loc=eof''Loc=
可以看出,词法分析的时候,将上面的代码拆分一个个token,后面数字表示某一行的第几个字符,例如第一个void,表示第18行第一个字符。
语法树-AST
语法分析,生成语法树(AST,Abstract Syntax Tree): $ clang -fmodules -fsyntax-only -Xclang -ast-dump main.m
通过语法树,我们能知道这个代码是做什么的。
还是刚刚的test函数
生成语法树如下:
|-FunctionDecl 0x7fa1439f5630 line:18:6test'void (int, int)'| |-ParmVarDecl 0x7fa1439f54b0 col:15 used a'int'| |-ParmVarDecl 0x7fa1439f5528 col:22 used b'int'| `-CompoundStmt 0x7fa142167c88 | `-DeclStmt 0x7fa142167c70 | `-VarDecl 0x7fa1439f5708 col:9 c'int'cinit| `-BinaryOperator 0x7fa142167c48 'int''-'| |-BinaryOperator 0x7fa142167c00 'int''+'| | |-ImplicitCastExpr 0x7fa1439f57b8 'int'| | | `-DeclRefExpr 0x7fa1439f5768 'int'lvalue ParmVar 0x7fa1439f54b0'a''int'| | `-ImplicitCastExpr 0x7fa1439f57d0 'int'| | `-DeclRefExpr 0x7fa1439f5790 'int'lvalue ParmVar 0x7fa1439f5528'b''int'| `-IntegerLiteral 0x7fa142167c28 'int'3`-
在终端敲出的时候,终端很直观的帮我们用颜色区分。我们可以用图形显示如下:
test函数的语法树
LLVM IR
LLVM IR有3种表示形式(本质是等价的)
text:便于阅读的文本格式,类似于汇编语言,拓展名.ll, $ clang -S -emit-llvm main.m
memory:内存格式
bitcode:二进制格式,拓展名.bc, $ clang -c -emit-llvm main.m
我们以text形式编译查看:
; Function Attrs: noinline nounwind optnone ssp uwtabledefinevoid@test(i32, i32)#2 {%3= alloca i32, align4%4= alloca i32, align4%5= alloca i32, align4store i32 %0, i32* %3, align4store i32 %1, i32* %4, align4%6= load i32, i32* %3, align4%7= load i32, i32* %4, align4%8= add nsw i32 %6, %7%9= sub nsw i32 %8,3store i32 %9, i32* %5, align4retvoid}
IR基本语法
注释以分号 ; 开头
全局标识符以@开头,局部标识符以%开头
alloca,在当前函数栈帧中分配内存
i32,32bit,4个字节的意思
align,内存对齐
store,写入数据
load,读取数据
官方语法参考https://llvm.org/docs/LangRef.html
应用与实践
我们的开发都是基于源码开发,所以我们首先要进行源码下载和编译。
源码下载
下载LLVM$ git clonehttps://git.llvm.org/git/llvm.git/下载clang$ cd llvm/tools$ git clonehttps://git.llvm.org/git/clang.git/备注:clang是llvm的子项目,但是它们的源码是分开的,我们需要将clang放在llvm/tools目录下。
源码编译
这里我们在终端敲出的clang是xcode默认内置clang编译器,我们自己要进行LLVM开发的话,需要编译属于我们自己的clang编译器
首先安装cmake和ninja(先安装brew,https://brew.sh/)$ brew install cmake$ brew install ninjaninja如果安装失败,可以直接从github获取release版放入【/usr/local/bin】中https://github.com/ninja-build/ninja/releases在LLVM源码同级目录下新建一个【llvm_build】目录(最终会在【llvm_build】目录下生成【build.ninja】$ cd llvm_build$ cmake -G Ninja ../llvm -DCMAKE_INSTALL_PREFIX=LLVM的安装路径备注:生成build.ninja,就表示编译成功,-DCMAKE_INSTALL_PREFIX 表示编译好的东西放在指定的路径,-D表示参数。更多cmake相关选项,可以参考: https://llvm.org/docs/CMake.html
接下来依次执行编译、安装指令
$ ninja编译完毕后, 【llvm_build】目录大概21.05G(这个真的是好大啊)$ ninja install
然后到这里我们的编译就完成了。
另一种方式是通过Xcode编译,生成Xcode项目再进行编译,但是速度很慢(可能需要1个多小时)。
方法如下:
在llvm同级目录下新建一个【llvm_xcode】目录
$ cd llvm_xcode
$ cmake -G Xcode ../llvm
应用与实践的参考
libclang、libTooling
官方参考:https://clang.llvm.org/docs/Tooling.html
应用:语法树分析、语言转换等
Clang插件开发
官方参考
1、https://clang.llvm.org/docs/ClangPlugins.html
2、https://clang.llvm.org/docs/ExternalClangExamples.html
3、https://clang.llvm.org/docs/RAVFrontendAction.html
应用:代码检查(命名规范、代码规范)等
Pass开发
官方参考:https://llvm.org/docs/WritingAnLLVMPass.html
应用:代码优化、代码混淆等
开发新的编程语言
1、https://llvm-tutorial-cn.readthedocs.io/en/latest/index.html
2、https://kaleidoscope-llvm-tutorial-zh-cn.readthedocs.io/zh_CN/latest/