Spark SQL(七):内置函数

在Spark 1.5.x版本,增加了一系列内置函数到DataFrame API中,并且实现了code-generation的优化。与普通的函数不同,DataFrame的函数并不会执行后立即返回一个结果值,而是返回一个Column对象,用于在并行作业中进行求值。Column可以用在DataFrame的操作之中,比如select,filter,groupBy等。函数的输入值,也可以是Column。

image.png
image.png
image.png
image.png
image.png

练习:根据每天的用户访问日志和用户购买日志,统计每日的uv和销售额,统计每个种类的销售额排名前3的产品

UV:每天都有很多用户来访问,但是每个用户可能每天都会访问很多次,所以,uv,指的是,对用户进行去重以后的访问总数

1、统计每日的uv

package cn.spark.study.sql

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.types.IntegerType
import org.apache.spark.sql.functions._


object DailyUV {
  
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
        .setMaster("local")  
        .setAppName("DailyUV")
    val sc = new SparkContext(conf)
    val sqlContext = new SQLContext(sc)
    
    // 要使用Spark SQL的内置函数,就必须在这里导入SQLContext下的隐式转换
    import sqlContext.implicits._
    
    // 构造用户访问日志数据,并创建DataFrame
    
    // 模拟用户访问日志,日志用逗号隔开,第一列是日期,第二列是用户id
    val userAccessLog = Array(
        "2015-10-01,1122",
        "2015-10-01,1122",
        "2015-10-01,1123",
        "2015-10-01,1124",
        "2015-10-01,1124",
        "2015-10-02,1122",
        "2015-10-02,1121",
        "2015-10-02,1123",
        "2015-10-02,1123");
    val userAccessLogRDD = sc.parallelize(userAccessLog, 5)
    
    // 将模拟出来的用户访问日志RDD,转换为DataFrame
    // 首先,将普通的RDD,转换为元素为Row的RDD
    val userAccessLogRowRDD = userAccessLogRDD
        .map { log => Row(log.split(",")(0), log.split(",")(1).toInt) }
    // 构造DataFrame的元数据
    val structType = StructType(Array(
        StructField("date", StringType, true),
        StructField("userid", IntegerType, true)))  
    // 使用SQLContext创建DataFrame
    val userAccessLogRowDF = sqlContext.createDataFrame(userAccessLogRowRDD, structType)  
    
    //聚合函数的用法(countDistinct)
    // 首先,对DataFrame调用groupBy()方法,对某一列进行分组
    // 然后,调用agg()方法 ,第一个参数,必须传入之前在groupBy()方法中出现的字段
    // 第二个参数,传入countDistinct、sum、first等,Spark提供的内置函数
    // 内置函数中,传入的参数,是用单引号作为前缀的其他字段
    userAccessLogRowDF.groupBy("date")
        .agg('date', countDistinct(userid))  
        .map { row => Row(row(1), row(2)) }   
        .collect()
        .foreach(println)  
  }
}

2、统计每天的销售额

package cn.spark.study.sql

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.types.DoubleType
import org.apache.spark.sql.functions._



/**
 * @author Administrator
 */
object DailySale {
  
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
        .setMaster("local")
        .setAppName("DailySale")
    val sc = new SparkContext(conf)
    val sqlContext = new SQLContext(sc)
  
    import sqlContext.implicits._
    
    // 说明一下,业务的特点
    // 实际上呢,我们可以做一个,单独统计网站登录用户的销售额的统计
    // 有些时候,会出现日志的上报的错误和异常,比如日志里丢了用户的信息,那么这种,我们就一律不统计了
    
    // 模拟数据
    val userSaleLog = Array("2015-10-01,55.05,1122",
        "2015-10-01,23.15,1133",
        "2015-10-01,15.20,",
        "2015-10-02,56.05,1144",
        "2015-10-02,78.87,1155",
        "2015-10-02,113.02,1123")
    val userSaleLogRDD = sc.parallelize(userSaleLog, 5)
    
    // 进行有效销售日志的过滤
    val filteredUserSaleLogRDD = userSaleLogRDD
        .filter { log => if (log.split(",").length == 3) true else false }
      
    val userSaleLogRowRDD = filteredUserSaleLogRDD
        .map { log => Row(log.split(",")(0), log.split(",")(1).toDouble) }
    
    val structType = StructType(Array(
        StructField("date", StringType, true),
        StructField("sale_amount", DoubleType, true)))
    
    val userSaleLogDF = sqlContext.createDataFrame(userSaleLogRowRDD, structType)  
    
    // 开始进行每日销售额的统计
    userSaleLogDF.groupBy("date")
        .agg('date', sum(sale_amount))
        .map { row => Row(row(1), row(2)) }
        .collect()
        .foreach(println)  
  }
  
}

3、统计每个种类的销售额排名前3的产品(分组topN,开窗函数row_number)

  • row_number()开窗函数的作用:
    其实就是给每个分组的数据,按照其排序顺序,打上一个分组内的行号,比如说,有一个分组date=20151001,里面有3条数据,1122、1121、1124,那么对这个分组的每一行使用row_number()开窗函数以后,三行,依次会获得一个组内的行号,行号从1开始递增,比如1122 1,1121 2,1124 3
  • row_number()开窗函数的语法说明:
    首先,可以在SELECT查询时,使用row_number()函数
    其次,row_number()函数后面先跟上OVER关键字
    然后,括号中是PARTITION BY,也就是说根据哪个字段进行分组,其次是可以用ORDER BY进行组内排序
    最后row_number()就可以给每个组内的行,一个组内行号

sales.txt

Thin�Cell Phone�6000
Normal�Tablet�1500
Mini�Tablet�5500
UltraThin�Cell Phone�5000
VeryThin�Cell Phone�6000
Big�Tablet�2500
Bedable�Cell Phone�3000
Foldable�Cell Phone�3500
Pro�Tablet�4500
Pro2�Tablet�6500
package cn.spark.study.sql;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.hive.HiveContext;


public class RowNumberWindowFunction {

    @SuppressWarnings("deprecation")
    public static void main(String[] args) {
        SparkConf conf = new SparkConf()
                .setAppName("RowNumberWindowFunction");
        JavaSparkContext sc = new JavaSparkContext(conf);
        HiveContext hiveContext = new HiveContext(sc.sc());
        
        // 创建销售额表,sales表
        hiveContext.sql("DROP TABLE IF EXISTS sales");
        hiveContext.sql("CREATE TABLE IF NOT EXISTS sales ("
                + "product STRING,"
                + "category STRING,"
                + "revenue BIGINT)");  
        hiveContext.sql("LOAD DATA "
                + "LOCAL INPATH '/usr/local/spark-study/resources/sales.txt' "
                + "INTO TABLE sales");
        
        // 开始编写我们的统计逻辑,使用row_number()开窗函数
        DataFrame top3SalesDF = hiveContext.sql(""
                + "SELECT product,category,revenue "
                + "FROM ("
                    + "SELECT "
                        + "product,"
                        + "category,"
                        + "revenue,"
                        + "row_number() OVER (PARTITION BY category ORDER BY revenue DESC) rank "
                    + "FROM sales "  
                + ") tmp_sales "
                + "WHERE rank<=3");
        
        // 将每组排名前3的数据,保存到一个表中
        hiveContext.sql("DROP TABLE IF EXISTS top3_sales");  
        top3SalesDF.saveAsTable("top3_sales");  
        
        sc.close();
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342

推荐阅读更多精彩内容