高斯消元——01异或方程组

题目大意

给一个集合,问有多少个子集满足这样的条件:子集内的元素之积可以开方。UVA-11542。

样例输入

4
3
2 3 5
3
6 10 15
4
4 6 10 15
3
2 2 2

样例输出

0
1
2
3

题目分析

可以将集合里的每个数拆成素数之积,比如第三组,4 = 2^2 ,6 = 2^1 * 3^1 , 10 = 2^1 * 5^1 , 15 = 3^1 * 5^1 。
能拆出来的素数因子有三个,就列三个方程,将4,6,10,15这四个数记做X1,X2,X3,X4。他们取1代表要选这个数字。
他们取0等于不选这个数字。
对于素数因子2 : 2X1 + 1X2 + 1X3 + 0X4 = 0
对于素数因子3 : 0X1 + 1X2 + 0X3 + 1X4 = 0
对于素数因子5 : 0X1 + 0X2 + 1X3 + 1X4 = 0

由于要使得最终的积可以开根,所以每个因子的指数得是偶数。
所以可以把系数模2得到:

对于素数因子2 : 0X1 + 1X2 + 1X3 + 0X4 = 0
对于素数因子3 : 0X1 + 1X2 + 1X3 + 0X4 = 0
对于素数因子5 : 0X1 + 0X2 + 1X3 + 1X4 = 0

矩阵:
0 1 1 0 0
0 1 0 1 0
0 0 1 1 0

然后将它异或消元。跟高斯消元类似,只不过不是每行相减,而是每行异或。

解出来的话,先找到方程自由变量的个数,因为自由变量代表可以等于0或1。就是可以选也可以不选。
一共就有2^tmp(自由变量) , 这么多种情况。除掉 一种全都不选的情况就是答案。

代码如下

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#define CLR(x) memset(x,0,sizeof(x))
#define LL long long
using namespace std;
int prime[1000];
int vis[1000];
int mat[505][505];
int n;
int maxr;

int Pri(){
    for(int i = 2 ; i <= 25 ; i++)
        for(int j = i*i ; j <= 625 ; j += i)
            vis[j] = 1;
    int con = 0;
    for(int i = 2 ; i <= 500 ; i++){
        if(vis[i] == 0){
            prime[con] = i;
            con++;
        }
    }
    return con;
}

void debug()
{
    printf("\n");
    for(int i = 0 ; i < maxr+1 ; i++){
        for(int j = 0 ; j < n ; j++){
            printf("%d ",mat[i][j]);
        }
        printf("\n");
    }
    printf("\n");
}

int guass(){
    int r = maxr + 1;
    int c = n;
    int i = 0 , j = 0;
    while(i<r&&j<c){
        int tmp = i;
        for(int k = i ; k < r ;k++){
            if(mat[k][j]) tmp = k;
        }
        if(mat[tmp][j]){
            if(tmp!=i){
                for(int k = 0 ; k < c ;k++) swap(mat[i][k],mat[tmp][k]);
            }
            for(int k = i+1 ; k < r ; k++){
                if(mat[k][j]){
                    for(int u = 0 ; u < c ; u++){
                        mat[k][u] ^= mat[i][u];
                    }
                }
            }
            i++;
        }
        j++;
    }
    return n-i;
}

int main()
{
    int cas;
    scanf("%d",&cas);
    int num = Pri();
    while(cas--){
        CLR(mat);
        maxr = 0;
        scanf("%d",&n);
        for(int i = 0 ; i < n ; i++){
            LL x;
            scanf("%lld",&x);
            for(int j = 0 ; j < num ; j++){
                int tmp = prime[j];
                //bool flag = false;
                while(x%tmp == 0){
                    x/=tmp;
                    maxr = max(maxr,j);
                    mat[j][i] ^= 1;
                    //if(x == 1){flag = true ; break;}
                }
                //if(flag) break;
            }

        }
        int ans = guass();
        //debug();

        printf("%lld\n",(1LL<<ans)-1);
    }
}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容