贝叶斯分类器(1)贝叶斯决策论概述、贝叶斯和频率、概率和似然

贝叶斯分类器思维导图

贝叶斯分类器,即是以贝叶斯决策理论为基础的分类器,什么是贝叶斯决策理论呢?

贝叶斯决策论

1 统计推断中的贝叶斯学派和频率学派

贝叶斯决策论是贝叶斯学派关于统计推断(根据已有资料或者说数据,对未知问题作出判断)的理论,要理解贝叶斯理论,就不得不和他的 “老对手”——频率学派(经典学派)一起聊。

首先我们看看统计推断的问题是什么。statistical inference 是学统计的目的,即根据样本数据,对总体进行统计推断(假设检验 或 预测).是指统计学中研究如何根据样本数据去推断总体数量特征的方法。统计推断主要可以分为两大类:一类是参数估计问题;另一类是假设检验问题。

常见统计推断问题

关于这些问题,从20世纪上半页至今,频率学派和贝叶斯学派两大学派一直在辩论,也一直互相不服。贝叶斯学派的发展在二十世纪滞后于频率学派,所以我们在学校教材上学到的统计推断的方法基本上都是频率学派的,比如最大似然估计、卡方检验、T检验、矩估计等等。

两个学派争论的点是什么呢?

  • 频率学派 认为频率即概率,我们所看到的样本只是无数可能的试验结果的一部分展现,样本中未出现的结果不是不可能出现,只是这次抽样没有出现而已,综合考虑我们看到的和没看到的全部可能的结果,总体分布F(X,\theta )是确定的,因此其中参数\theta也是确定的,按我的理解,频率学派是忽略我们观察者,而从事件本身出发,希望以纯粹的客观事实来描述事件。所以我们看像极大似然估计、区间估计等方法,都是希望尽可能的找到那个未知的、确定的参数。

  • 贝叶斯学派 认为概率是反映事件发生可能性的一个度量,并且不认为样本X是无数可能中的一部分,既然样本X出现了,那么就只能依靠事件X去做判断,我们不知道是什么分布生成了这些样本,所以什么分布都有可能,因此其中参数\theta是不确定的,只是不同的\theta的概率不同,而且应该是服从一个分布H(\theta )的,H(\theta )为“先验分布”(指抽样之前得到的分布),这是贝叶斯学派引入的主观概率的概念(主观概率是根据对事件的周密观察所得到的先验知识,并不是唯心主义的),这里的“验”就是这些样本X的作用,H(\theta )经过真实样本的“验”之后,就得到了“后验概率”H(\theta|X )(后验概率是条件概率的形式,但不可以理解为这个形式的就是后验概率,重点要看有没有后验概率的思想)。因此我们可以理解为贝叶斯学派没有忽略观察者的作用,在做判断时需要不仅要考虑抽样信息,也要考虑观察者对事件的先验知识,同时还引入了各种推断结果所带来的损失,显然这与频率学派的出发点是不同的,从拉普拉斯所说的Probability theory is nothing but common sense reduced to calculation也可窥一二。

现在应该对贝叶斯学派的思想有了一点认识了。那我们看看在分类问题上贝叶斯分类器是怎么一回事呢?

2 贝叶斯分类器

2.1 贝叶斯分类器概述

贝叶斯分类器是一类分类算法的总称,贝叶斯定理是这类算法的核心,因此统称为贝叶斯分类。

在分类问题中,我们可以根据样本x计算出在样本中各个类别c出现的概率,即后验概率P(c|x ),根据之前对贝叶斯统计推断的介绍,还需要引入各种推断结果所带来的损失,我们定义\lambda _{i,j}为将c_j误分为c_i时所产生的损失,根据误判出现的概率和导致的损失,可以计算出错误分类是产生的期望损失,称之为“风险”:

设想我们制定了一个判定准则h来对x进行分类得到h(x),如果每个分类结果h(x)都是风险最小的结果,那个总体的风险R(h)也是最小的,这就是贝叶斯判定准则,称h为贝叶斯最优分类器。

贝叶斯最优分类器为:

后验概率最大化与风险最小化:对于二分类问题,λ要么等于0要么等于1

i=i,即正确分类时,\lambda_{ii}=0,所以可以计算此时所以条件风险(该条件下的风险)为

R(c_{i}|x)=\sum_{j=1}^N \lambda _{ij}P(c_{j}|x) =\sum_{j=1}^N 1*P(c_{j}|x) - P(c_{i}|x) =1-P(c_{i}|x)

  • 所以当分类错误率达到最小时,需要使后验概率最大化就是使风险最小化。即:

P(c|x)就是根据样本x进行分类,想想以前讲过的KNN、LR等,所做的不就是这个工作吗,这种直接对P(c|x)进行建模来预测c的方法,都叫做判别式模型(Discriminative Model),判别式模型不考虑样本的产生模型,直接研究预测模型。如果我们换一种思路,先得到联合分布P(c,x),再得到后验概率P(c|x),这就是生成式模型(Generative Model),顾名思义,生成式模型会研究样本的产生模型,判别式模型和生成式模型都是监督学习中的概念。

显然生成模型比判别模型包含更多的信息,可以做到更多的事,实际上由生成模型可以得到判别模型,但由判别模型得不到生成模型,贝叶斯分类器就是从生成模型的角度来解决分类问题,怎么实现呢?

h^*(x)=\argmax_{c\in Y} P(c|x)=\argmax_{c\in Y} \frac{P(x,c)}{P(x)}=\argmax_{c\in Y} \frac{P(c)*P(x|c)}{P(x)}

P(c)是类“先验”(prior)概率;P(x|c)是样本x相对于类标记c的类条件概率(class-conditional probability);P(x)是用于归一化的“证据”(evidence)因子。

2.2 求解方法

类先验概率P(c)表达了样本空间中各类样本所占的比例,根据大数定律,当训练集包含充足的独立同分布样本时, P(c)可通过各类样本出现的频率来进行估计.P(x)看起来是样本出现的概率,对给定样本x,从形式上也可以看出与样本的类标记无关,因此估计P(c|x)的问题就转化为如何基于训练数据D来估计先验P(c)P(x|c)的问题,所以问题的重点就是怎么求P(x|c),得到P(x|c)就能得到联合概率P(x,c),也能能得到一个贝叶斯分类器了。那么怎么完成呢?能直接通过样本中的频率来统计吗?

P(x|c)来说,由于它涉及关于x 所有属性的联合概率,直接根据样本出现的频率来估计将会遇到严重的困难,例如,假设样本的 d 个属性都是二值的,则样本空间将有2^d种可能的取值,在现实应用中,这个值往往远大于训练样本数m,也就是说,很多样本取值在训练集中根本没有出现,直接使用频率来估计P(x|c)显然不可行,因为"未被观测到"与"出现概率为零"通常是不同的。

那应该怎么计算呢?先说第一种方法:最大似然估计

要求得类条件概率P(x|c),如果我们什么信息都没有肯定是不行的,所以一般假设我们知道它的概率分布,然后用一定方法来求出分布的参数即可。对于求分布的参数,一般使用最大似然估计MLE,虽然MLE是频率学派的估计方法,不过好用的东西大家一起用嘛,贝叶斯学派有个差不多的估计方法:最大后验估计MAP,不过MAP比MLE多了个作为因子的先验概率P(θ),更复杂一些,这些内容咱们下回再讲。

说回最大似然估计,说到最大似然估计就不得不问一句,什么是似然?这里需要好好的说道说道,只有搞清楚似然的概念才能理解怎么计算它。

2.3 似然

2.3.1 似然、似然与概率的区别和联系

极大似然是频率学派的参数估计方法,似然即参数的似然,是由频率学派建立的、极大似然估计中的重要概念。从前文可知,频率学派认为参数是确定值,参数的似然就表达了给定样本x下某参数为这个确定值的可能性。在计算上,参数的似然值等于在该参数下事件发生的概率L(θ|x)=P(X=x|θ)。也就是说,似然值可以用概率来计算,但似然却不是概率,因为频率学派的体系下,参数不是随机变量,故似然不是概率,概率是在确定参数的情况下,观测结果发生的可能性,概率的对象是概率空间中的事件,而似然的对象是参数。

因此,似然函数定义为:似然函数L(θ|x)是给定样本x时,关于参数θ的函数,其在数值上等于给定参数θ后变量X的概率

L(θ|x)=f(x;θ)

  • 如果x是离散型随机变量时f(x;θ)是概率分布,f(x;θ)=P_{θ}(x)
  • 如果x是连续型随机变量时f(x;θ)是概率密度,此时在x(一个样本点)处f(x;θ)=0(那给定这一个点的θ的似然也是0,是不是可以理解为根据这点信息判断出θ是否为真值的可能性太低),此时应该给定一段x区间来积分得到似然值。

值得注意的是,因为θ不是随机变量,所以各个θ所对应的似然值是不能做累加的,我们都知道:\sum_{x}^X P(x)=1,这也是概率的一个基本性质,而似然是不满足这一点的,\sum_{θ} L(θ;x)并不为1,比如两个不均匀的硬币,正面的概率未知作为θ,给定x为观察到一次正面,θ=0.6P=0.6θ=0.8P=0.8,显然加和大于1,其实甚至可以说这样相加是没有意义的,因为θ只是似然函数的自变量,并不是概率空间里的取值。这也从一方面说明似然是不满足概率定理(柯尔莫果洛夫公理)的三个条件的,似然并不是概率。

2.3.2 一个例子

关于似然,知乎上还有一个很形象的例子,他山之石,可以借鉴一下,如何理解似然函数?HiTao的回答

其中的核心观点是:似然和概率两个函数有着不同的名字,却源于同一个函数。p(x|θ)是一个有着两个变量的函数。如果,你将θ设为常量,则你会得到一个概率函数(关于x的函数);如果,你将x设为常量你将得到似然函数(关于θ的函数)

举一个例子:
有一个硬币,它有θ的概率会正面向上,有θ的概率反面向上。现有正反序列:x=HHTTHTHHHH。无论θ的值是多少,这个序列的概率值为

θ⋅θ⋅(1-θ)⋅(1-θ)⋅θ⋅(1-θ)⋅θ⋅θ⋅θ⋅θ = θ⁷ (1-θ)³

比如,如果θ=0,则得到这个序列的概率值为0。如果θ=1/2,概率值为1/1024。
尝试所有θ可取的值,画出了下图,即为似然函数的函数图像:

似然函数图像

可以看出θ=0.7时的似然值最大,即0.7是最可能是真值的参数值,这就是最大似然估计的思想了。

2.4 回到贝叶斯分类

现在应该对似然有了一定的了解了,我们回忆一下贝叶斯分类器说到哪了,对:

h^*(x)=\argmax_{c\in Y} P(c|x)=\argmax_{c\in Y} \frac{P(x,c)}{P(x)}=\argmax_{c\in Y} \frac{P(c)*P(x|c)}{P(x)}

我们的目标是用最大似然估计计算得到P(x|c),得到联合分布,具体做法及MLE和MAP的区别下一篇再细说~



主要参考资料

《机器学习》周志华
如何理解似然函数?HiTao的回答

.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,602评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,442评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,878评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,306评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,330评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,071评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,382评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,006评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,512评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,965评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,094评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,732评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,283评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,286评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,512评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,536评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,828评论 2 345