分库分表

1.为啥要分表呢?

一个表的数据量级达到几百万的时候,性能就比较差了,这个时候就可以考虑分表了,就是把一个表的数据拆分到多个表里面去,比如用用户id做hash,把不同的用户id分、hash到不同的表里面去。

2.为什么要分库呢?

当一个数据库支撑到2000并发的时候,就要考虑做分库了,就是把一个库里面的数据拆分到多个库里面去。

3.有啥分库分表的中间件呢?

4.如何对数据进行水平拆分或垂直拆分?

水平拆分就是把一个数据库的表拆分到多个库的多个表里面去,所有的库表数据加起来才是全部的数据,其实就是把数据更均匀的放到更多的库里面去,用多个库扛住更高的并发,也能实现存储的扩容。

垂直拆分就是把一张表按照字段来拆分,把不同的字段存储到不同的库或者表上面去。一般来说,会挑出来几个访问频率高的字段放到一张表里面去,因为数据库是有缓存的,你访问频率高的行字段越少,就可以在缓存保存更多的行。这种拆分一般在表层面做的更多一些。

5.分库分表的方式

有两种,一种是range,就是每个库一段连续的数据,比如按照时间的范围来,但是这种方式比较容易产生热点问题,就是大部分请求都去冲着最新的数据去的,另一种是按照某个字段做hash,这个比较常用。
优缺点:
range来分,好处在于说,后面扩容的时候,就很容易,因为你只要预备好,给每个月都准备一个库就可以了,到了一个新的月份的时候,自然而然,就会写新的库了;缺点,但是大部分的请求,都是访问最新的数据。实际生产用range,要看场景,你的用户不是仅仅访问最新的数据,而是均匀的访问现在的数据以及历史的数据。

hash分法,好处在于说,可以平均分配没给库的数据量和请求压力;坏处在于说扩容起来比较麻烦,会有一个数据迁移的这么一个过程。

5.怎么把单库单表迁移到分库分表上去?

假设,现在有一个单表600万数据的表,你现在把他分了三个库,每个库四个表,单表50万。怎么迁移?
一般来说就是双写,就是在线上系统里面,之前所有写库的地方,增删改操作,都除了对老库增删改,都加上对新库的增删改,,同时写俩库。

然后系统部署之后,新库数据差太远,用导数工具,跑起来读老库数据写新库,写的时候要根据gmt_modified这类字段判断这条数据最后修改的时间,除非是读出来的数据在新库里没有,或者是比新库的数据新才会写。

接着导完一轮之后,有可能数据还是存在不一致,那么就程序自动做一轮校验,比对新老库每个表的每条数据,接着如果有不一样的,就针对那些不一样的,从老库读数据再次写。反复循环,直到两个库每个表的数据都完全一致为止。

接着当数据完全一致了,就ok了,基于仅仅使用分库分表的最新代码,重新部署一次。

6.动态扩容缩容的分表方案是什么?

如果你分库分表之后现在这些库和表又支撑不住了,要继续扩容怎么办?可能就你的每个库的容量又快满了,或者是你的表数据量又太大了,也可能是你每个库的写并发太高了,你得继续扩容。

可以一开始上来就是32个库,每个库32个表,1024张表,根据某个id先根据32取模路由到库,再根据32取模路由到库里的表。
无论是并发支撑还是数据量支撑都没问题,每个库正常承载的写入并发量是1000,如果每个库承载1500的写并发,32 * 1500 = 48000的写并发,接近5万/s的写入并发,前面再加一个MQ,削峰,每秒写入MQ 8万条数据,每秒消费5万条数据。
1024张表,假设每个表放500万数据,在MySQL里可以放50亿条数据。
哪怕是要减少库的数量,就按倍数缩容就可以了,然后修改一下路由规则。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,723评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,485评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,998评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,323评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,355评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,079评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,389评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,019评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,519评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,971评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,100评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,738评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,293评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,289评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,517评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,547评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,834评论 2 345

推荐阅读更多精彩内容