UserCF & ItemCF

UserCF与ItemCF的比较

参考书本: 项亮, 推荐系统实践. 2012
本文系阅读笔记

基于邻域&隐语义模型

userCF:被Digg用来给用户推荐个性化网络文章

ItemCF: 亚马逊推荐商品

UserCF 给用户推荐那些和他有共同兴趣爱好的用户喜欢的物品,而 ItemCF 给用户推荐那些和他之前喜欢的物品类似的物品。

从这个算法的原理可以看到, UserCF 的推荐结果着重于反映和用户兴趣相似的小群体的热点,而 ItemCF的推荐结果着重于维系用户的历史兴趣。

UserCF 的推荐更社会化,反映了用户所在的小型兴趣群体中物品的热门程度,而 ItemCF 的推荐更加个性化,反映了用户自己的兴趣传承。

UserCF 可以给用户推荐和他有相似爱好的一群其他用户今天都在看的新闻,这样在抓住热点和时效性的同时,保证了一定程度的个性化。UserCF 适合用于新闻推荐的另一个原因是从技术角度考量的。因为作为一种物品,新闻的更新非常快,每时每刻都有新内容出现,而 ItemCF 需要维护一张物品相关度的表,如果物品更新很快,那么这张表也需要很快更新,这在技术上很难实现。UserCF只需要用户相似表即可。

而对于图书、电影、电子商务,在这些网站中,用户的兴趣是比较固定和持久的。此外,这些系统中的用户大都不太需要流行度来辅助他们判断一个物品的好坏,而是可以通过自己熟悉领域的知识自己判断物品的质量。因此,这些网站中个性化推荐的任务是帮助用户发现和他研究领域相关的物品。同时,从技术上考虑, UserCF 需要维护一个用户相似度的矩阵,而 ItemCF 需要维护一个物品相似度矩阵。

usercf&itemcf.png

选择方法

首先应该满足产品的需求,比如如果需要提供推荐解释,那么可能得选择 ItemCF 算法。

其次,需要看实现代价,比如若用户太多,很难计算用户相似度矩阵,这个时候可能不得不抛弃 UserCF 算法。

最后,离线指标和点击率等在线指标不一定成正比。而且,这里对比的是最原始的 UserCF 和 ItemCF 算法,这两种算法都可以进行各种各样的改进。一般来说,这两种算法经过优化后,最终得到的离线性能是近似的。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342

推荐阅读更多精彩内容