CUDA与cuDNN

姓名:王咫毅

学号:19021211150

【嵌牛导读】CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。NVIDIA cuDNN是用于深度神经网络的GPU加速库。它强调性能、易用性和低内存开销。NVIDIA cuDNN可以集成到更高级别的机器学习框架中,如谷歌的Tensorflow。

【嵌牛鼻子】cuda cudnn tensorflow

【嵌牛提问】cuda和cudnn是什么关系?怎么安装他们?

【嵌牛正文】

转载自:CUDA与cuDNN - 简书

1、什么是CUDA

        CUDA(ComputeUnified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。

2、什么是CUDNN

NVIDIA cuDNN是用于深度神经网络的GPU加速库。它强调性能、易用性和低内存开销。NVIDIA cuDNN可以集成到更高级别的机器学习框架中,如谷歌的Tensorflow、加州大学伯克利分校的流行caffe软件。简单的插入式设计可以让开发人员专注于设计和实现神经网络模型,而不是简单调整性能,同时还可以在GPU上实现高性能现代并行计算。

3、CUDA与CUDNN的关系

      CUDA看作是一个工作台,上面配有很多工具,如锤子、螺丝刀等。cuDNN是基于CUDA的深度学习GPU加速库,有了它才能在GPU上完成深度学习的计算。它就相当于工作的工具,比如它就是个扳手。但是CUDA这个工作台买来的时候,并没有送扳手。想要在CUDA上运行深度神经网络,就要安装cuDNN,就像你想要拧个螺帽就要把扳手买回来。这样才能使GPU进行深度神经网络的工作,工作速度相较CPU快很多。

4、CUDNN不会对CUDA造成影响

官方Linux安装指南表述:

        从官方安装指南可以看出,只要把cuDNN文件复制到CUDA的对应文件夹里就可以,即是所谓插入式设计,把cuDNN数据库添加CUDA里,cuDNN是CUDA的扩展计算库,不会对CUDA造成其他影响。

cuDNN的安装文件有两个文件夹,共五个文件,如下

cudnn.h是调用加速库的文件,*.os是

CUDA平台里对应文件夹的文件,如下

可以看到,CUDA已有的文件与cuDNN没有相同的文件,复制CUDNN的文件后,CUDA里的文件并不会被覆盖,CUDA其他文件并不会受影响。

5、Linux下CUDNN的安装

在服务器上共安装了三个不同版本的CUDA,并不知道哪个能正常调用,所以需要安装三个不同版本的cuDNN。

cuDNN的文件已经放入服务器我的文件夹下

linu命令如下:如果不行,就全部去掉sudo。

cp 是复制,chmod是给与文件可读权限,使这个文件可以读取,rm 是删除文件

(1)

sudo cp /public/home/qliang/lyr/ysl/cudnn9.1/cuda/include/cudnn.h /usr/local/cuda-9.1/include

sudo cp /public/home/qliang/lyr/ysl/cudnn9.1/cuda/include/libcudnn* /usr/local/cuda-9.1/lib64

sudo chmod a+r /usr/local/cuda-9.1/include/cudnn.h

sudo chmod a+r /usr/local/cuda-9.1/lib64/libcudnn*

(2)

sudo cp /public/home/qliang/lyr/ysl/cudnn9.1/cuda/include/cudnn.h /public/software/cuda-9.1/include

sudo cp /public/home/qliang/lyr/ysl/cudnn9.1/cuda/lib64/libcudnn* /public/software/cuda-9.1/lib64

sudo chmod a+r /public/software/cuda-9.1/include/cudnn.h

sudo chmod a+r/public/software/cuda-9.1lib64/libcudnn*

(3)

sudo cp /public/home/qliang/lyr/ysl/cudnn10/cuda/include/cudnn.h/ usr/local/cuda-9.1/include

sudo cp/public/home/qliang/lyr/ysl/cudnn10/cuda/lib64/libcudnn*/usr/local/cuda-9.1/lib64

sudo chmod a+r /public/software/cuda-10.0/include/cudnn.h

sudo chmod a+r/public/software/cuda-10.0/lib64/libcudnn*

7、卸载cuDNN

因为是插入式设计,cuDNN的卸载也非常简单,只需要把相关文件删除就可以了。指令如下:

rm –rf /usr/local/cuda-9.1/include/cudnn.h

rm –rf /usr/local/cuda-9.1/lib64/libcudnn*

rm –rf /public/software/cuda-9.1/include/cudnn.h

rm –rf /public/software/cuda-9.1/lib64/libcudnn*

rm –rf /public/software/cuda-10.0/include/cudnn.h

rm –rf /public/software/cuda-10.0/lib64/libcudnn*

作者:Sunglam

链接:https://www.jianshu.com/p/622f47f94784

来源:简书

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,311评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,339评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,671评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,252评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,253评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,031评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,340评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,973评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,466评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,937评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,039评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,701评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,254评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,259评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,497评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,786评论 2 345

推荐阅读更多精彩内容