不是说C写的高斯模糊处理性能比Java好吗?
打开电脑,把原来调用Java处理的一行代码注释掉,开始折腾:
需提前配好ndk和cmake,ndk必须是R12以上版本。
附上ndk下载地址:
https://dl.google.com/android/repository/android-ndk-r13b-windows-x86.zip)
迅雷下,比androidstudio快得多
cmake不大,androidStudio会自动提示下载。
1、配置gradle
android {
defaultConfig {
externalNativeBuild {
cmake {
arguments '-DANDROID_TOOLCHAIN=clang'
}
}
}
externalNativeBuild {
cmake {
path "src/main/cpp/CMakeLists.txt" //指明make file相关的编译文件路径。
}
}
}
2、新建文件夹cpp至项目目录src->main->cpp,编写C代码blue_jni.cpp以及CMakeLists.txt文件,放在cpp目录供编译和调用
结构:
3、新建Java类:BlurUtils,里面加载native模块并调用native模块(C)的图片处理方法
static {
System.loadLibrary("blur_jni");
}
private static native void initCBlur1(int[] pix, int w, int h, int r);
private static native void initCBlur2(int[] pix, int w, int h, int r);
Java类里的方法:
//原始的高斯模糊 方法
private static native void initCBlur1(int[] pix, int w, int h, int r);
//利用均值模糊进行拟合 高斯模糊
private static native void initCBlur2(int[] pix, int w, int h, int r);
//加载native模块
static {
System.loadLibrary("blur_jni");
}
对应的C中的方法:
void Java_com_xxx_xxx_utils_BlurUtil_initCBlur1(JNIEnv *env,
jobject obj,
jintArray pix,
jint w,
jint h,
jint r) {
gaussBlur1(env->GetIntArrayElements(pix, NULL), w, h, r);
}
void Java_com_xxx_xxx_utils_BlurUtil_initCBlur2(JNIEnv *env,
jobject obj,
jintArray pix,
jint w,
jint h,
jint r) {
gaussBlur2(env->GetIntArrayElements(pix, NULL), w, h, r);
在需要模糊处理图片的地方调用封装好的方法就可以返回一个处理好的Bitmap了。
BlurUtil.gaussBlurUseAvg(bitmap, 15);
源码:
C:
#include <jni.h>
#include <android/log.h>
#include <iostream>
#include <cmath>
#define LOG_TAG "blur"
#define LOGD(...) __android_log_print(ANDROID_LOG_DEBUG, LOG_TAG, __VA_ARGS__)
#define PI 3.1415926
extern "C" {
//LOGD("jni %d: %lf", i, amplitude[i]);
void gaussBlur1(int *pix, int w, int h, int radius) {
float sigma = 1.0 * radius / 2.57; //2.57 * sigam半径之后基本没有贡献 所以取sigma为 r / 2.57
float deno = 1.0 / (sigma * sqrt(2.0 * PI));
float nume = -1.0 / (2.0 * sigma * sigma);
//高斯分布产生的数组
float *gaussMatrix = (float *) malloc(sizeof(float) * (radius + radius + 1));
float gaussSum = 0.0;
for (int i = 0, x = -radius; x <= radius; ++x, ++i) {
float g = deno * exp(1.0 * nume * x * x);
gaussMatrix[i] = g;
gaussSum += g;
}
//归1话
int len = radius + radius + 1;
for (int i = 0; i < len; ++i)
gaussMatrix[i] /= gaussSum;
//临时存储 一行的数据
int *rowData = (int *) malloc(w * sizeof(int));
int *listData = (int *) malloc(h * sizeof(int));
//x方向的模糊
for (int y = 0; y < h; ++y) {
//拷贝一行数据
memcpy(rowData, pix + y * w, sizeof(int) * w);
for (int x = 0; x < w; ++x) {
float r = 0, g = 0, b = 0;
gaussSum = 0;
for (int i = -radius; i <= radius; ++i) {
int k = x + i;
if (0 <= k && k <= w) {
//得到像素点的rgb值
int color = rowData[k];
int cr = (color & 0x00ff0000) >> 16;
int cg = (color & 0x0000ff00) >> 8;
int cb = (color & 0x000000ff);
r += cr * gaussMatrix[i + radius];
g += cg * gaussMatrix[i + radius];
b += cb * gaussMatrix[i + radius];
gaussSum += gaussMatrix[i + radius];
}
}
int cr = (int) (r / gaussSum);
int cg = (int) (g / gaussSum);
int cb = (int) (b / gaussSum);
pix[y * w + x] = cr << 16 | cg << 8 | cb | 0xff000000;
}
}
for (int x = 0; x < w; ++x) {
//拷贝 一列 数据
for (int y = 0; y < h; ++y)
listData[y] = pix[y * w + x];
for (int y = 0; y < h; ++y) {
float r = 0, g = 0, b = 0;
gaussSum = 0;
for (int j = -radius; j <= radius; ++j) {
int k = y + j;
if (0 <= k && k <= h) {
int color = listData[k];
int cr = (color & 0x00ff0000) >> 16;
int cg = (color & 0x0000ff00) >> 8;
int cb = (color & 0x000000ff);
r += cr * gaussMatrix[j + radius];
g += cg * gaussMatrix[j + radius];
b += cb * gaussMatrix[j + radius];
gaussSum += gaussMatrix[j + radius];
}
}
int cr = (int) (r / gaussSum);
int cg = (int) (g / gaussSum);
int cb = (int) (b / gaussSum);
pix[y * w + x] = cr << 16 | cg << 8 | cb | 0xff000000;
}
}
//清理内存
free(gaussMatrix);
free(rowData);
free(listData);
}
//参考:http://blog.ivank.net/fastest-gaussian-blur.html
//横向的均值模糊 srcPix:原始的像素值 destPix将处理过的像素值放入到 destPix中
void boxBlurH(int *srcPix, int *destPix, int w, int h, int radius) {
//用于索引
int index;
//r g b在遍历是 累加的色彩通道的总和
int a = 0, r = 0, g = 0, b = 0;
int ta, tr, tg, tb; //临时变量
//临时变量
int color;
int preColor;
//用于计算权值 1 / num
int num;
float iarr;
for (int i = 0; i < h; ++i) {
r = 0;
g = 0;
b = 0;
index = i * w;
num = radius;
for (int j = 0; j < radius; j++) {
//累加0,radius-1的色彩的总和
color = srcPix[index + j];
//a += (color & 0xff000000) >> 24;
r += (color & 0x00ff0000) >> 16;
g += (color & 0x0000ff00) >> 8;
b += (color & 0x000000ff);
}
//真正开始计算
for (int j = 0; j <= radius; ++j) {
num++;
iarr = 1.0 / (1.0 * num);
color = srcPix[index + j + radius];
//a += (color & 0xff000000) >> 24;
r += (color & 0x00ff0000) >> 16;
g += (color & 0x0000ff00) >> 8;
b += (color & 0x000000ff);
//ta = (int)(1.0 * a / num);
tr = (int) (r * iarr);
tg = (int) (g * iarr);
tb = (int) (b * iarr);
destPix[index + j] = tr << 16 | tg << 8 | tb | 0xff000000;
}
iarr = 1.0 / (1.0 * num);
for (int j = radius + 1; j < w - radius; ++j) {
preColor = srcPix[index + j - 1 - radius];
color = srcPix[index + j + radius];
//a += (color & 0xff000000) >> 24 - (preColor & 0xff000000) >> 24;
r = r + ((color & 0x00ff0000) >> 16) - ((preColor & 0x00ff0000) >> 16);
g = g + ((color & 0x0000ff00) >> 8) - ((preColor & 0x0000ff00) >> 8);
b = b + (color & 0x000000ff) - (preColor & 0x000000ff);
//ta = (int)(1.0 * a / num);
tr = (int) (r * iarr);
tg = (int) (g * iarr);
tb = (int) (b * iarr);
destPix[index + j] = tr << 16 | tg << 8 | tb | 0xff000000;
}
for (int j = w - radius; j < w; ++j) {
num--;
iarr = 1.0 / (1.0 * num);
preColor = srcPix[index + j - 1 - radius];
//a -= (preColor & 0xff000000) >> 24;
r -= (preColor & 0x00ff0000) >> 16;
g -= (preColor & 0x0000ff00) >> 8;
b -= (preColor & 0x000000ff);
//ta = (int)(1.0 * a / num);
tr = (int) (r * iarr);
tg = (int) (g * iarr);
tb = (int) (b * iarr);
//
//destPix[index + j] = (ta << 24 | tr << 16 | tg << 8 | tb);
destPix[index + j] = tr << 16 | tg << 8 | tb | 0xff000000;
}
}
}
//列的均值模糊 srcPix:原始的像素值 destPix将处理过的像素值放入到 destPix中
void boxBlurV(int *srcPix, int *destPix, int w, int h, int radius) {
//r g b在遍历是 累加的色彩通道的总和
int a = 0, r = 0, g = 0, b = 0;
int ta, tr, tg, tb; //临时变量
//临时变量
int color;
int preColor;
//用于计算权值 1 / num
int num;
float iarr;
for (int i = 0; i < w; ++i) {
r = 0;
g = 0;
b = 0;
num = radius;
for (int j = 0; j < radius; ++j) {
color = srcPix[j * w + i];
r += (color & 0x00ff0000) >> 16;
g += (color & 0x0000ff00) >> 8;
b += (color & 0x000000ff);
}
for (int j = 0; j <= radius; ++j) {
num++;
iarr = 1.0 / (1.0 * num);
color = srcPix[(j + radius) * w + i];
r += (color & 0x00ff0000) >> 16;
g += (color & 0x0000ff00) >> 8;
b += (color & 0x000000ff);
tr = (int) (r * iarr);
tg = (int) (g * iarr);
tb = (int) (b * iarr);
destPix[j * w + i] = tr << 16 | tg << 8 | tb | 0xff000000;
}
iarr = 1.0 / (1.0 * num);
for (int j = radius + 1; j < h - radius; ++j) {
preColor = srcPix[(j - radius - 1) * w + i];
color = srcPix[(j + radius) * w + i];
r = r + ((color & 0x00ff0000) >> 16) - ((preColor & 0x00ff0000) >> 16);
g = g + ((color & 0x0000ff00) >> 8) - ((preColor & 0x0000ff00) >> 8);
b = b + (color & 0x000000ff) - (preColor & 0x000000ff);
tr = (int) (r * iarr);
tg = (int) (g * iarr);
tb = (int) (b * iarr);
destPix[j * w + i] = tr << 16 | tg << 8 | tb | 0xff000000;
}
for (int j = h - radius; j < h; ++j) {
num--;
iarr = 1.0 / (1.0 * num);
preColor = srcPix[(j - radius - 1) * w + i];
r -= (preColor & 0x00ff0000) >> 16;
g -= (preColor & 0x0000ff00) >> 8;
b -= (preColor & 0x000000ff);
tr = (int) (r * iarr);
tg = (int) (g * iarr);
tb = (int) (b * iarr);
destPix[j * w + i] = tr << 16 | tg << 8 | tb | 0xff000000;
}
}
}
void boxBlur(int *srcPix, int *destPix, int w, int h, int r) {
if (r < 0) {
LOGD("boxBlur r < 0: %d", r);
return;
}
boxBlurH(srcPix, destPix, w, h, r);
boxBlurV(destPix, srcPix, w, h, r);
}
//领用n 个 box 拟合 sigma的高斯函数
//参考:http://www.csse.uwa.edu.au/~pk/research/pkpapers/FastGaussianSmoothing.pdf
void boxesForGauss(float sigma, int *size, int n) {
float wIdeal = sqrt(12.0 * sigma * sigma / n + 1.0);
int wl = floor(wIdeal);
if (0 == wl % 2)
wl--;
int wu = wl + 2;
float mIdeal = (12.0 * sigma * sigma - n * wl * wl - 4 * n * wl - 3 * n) / (-4 * wl - 4);
int m = round(mIdeal);
for (int i = 0; i < n; ++i)
size[i] = (i < m ? wl : wu);
}
void gaussBlur2(int *pix, int w, int h, int r) {
float sigma = 1.0 * r / 2.57; //2.57 *sigam半径之后基本没有贡献 所以取sigma为 r / 2.57
int boxSize = 3;
int *boxR = (int *) malloc(sizeof(int) * boxSize); //需要的个数
//计算拟合的半径
boxesForGauss(sigma, boxR, boxSize);
int *tempPix = (int *) malloc(sizeof(int) * w * h);
boxBlur(pix, tempPix, w, h, (boxR[0] - 1) / 2);
boxBlur(pix, tempPix, w, h, (boxR[1] - 1) / 2);
boxBlur(pix, tempPix, w, h, (boxR[2] - 1) / 2);
//清理内存
free(boxR);
free(tempPix);
}
//com.mxkj.yuanyintang.utils
void Java_com_xxx_xxx_utils_BlurUtil_initCBlur1(JNIEnv *env,
jobject obj,
jintArray pix,
jint w,
jint h,
jint r) {
gaussBlur1(env->GetIntArrayElements(pix, NULL), w, h, r);
}
void Java_com_xxx_xxx_utils_BlurUtil_initCBlur2(JNIEnv *env,
jobject obj,
jintArray pix,
jint w,
jint h,
jint r) {
gaussBlur2(env->GetIntArrayElements(pix, NULL), w, h, r);
}
}
JAVA:
import android.graphics.Bitmap;
public class BlurUtil {
//分别在x轴 和 y轴方向上进行高斯模糊
public static Bitmap gaussBlurUseGauss(Bitmap bitmap, int radius) {
int w = bitmap.getWidth();
int h = bitmap.getHeight();
//生成一张新的图片
Bitmap outBitmap = Bitmap.createBitmap(w, h, Bitmap.Config.ARGB_8888);
//定义一个临时数组存储原始图片的像素 值
int[] pix = new int[w * h];
//将图片像素值写入数组
bitmap.getPixels(pix, 0, w, 0, 0, w, h);
//进行模糊
initCBlur1(pix, w, h, radius);
//将数据写入到 图片
outBitmap.setPixels(pix, 0, w, 0, 0, w, h);
//返回结果
return outBitmap;
}
//利用均值模糊 逼近 高斯模糊
public static Bitmap gaussBlurUseAvg(Bitmap bitmap, int radius) {
int w = bitmap.getWidth();
int h = bitmap.getHeight();
//生成一张新的图片
Bitmap outBitmap = Bitmap.createBitmap(w, h, Bitmap.Config.ARGB_8888);
//定义一个临时数组存储原始图片的像素 值
int[] pix = new int[w * h];
//将图片像素值写入数组
bitmap.getPixels(pix, 0, w, 0, 0, w, h);
//进行模糊
initCBlur2(pix, w, h, radius);
//将数据写入到 图片
outBitmap.setPixels(pix, 0, w, 0, 0, w, h);
//返回结果
return outBitmap;
}
//原始的高斯模糊 方法
private static native void initCBlur1(int[] pix, int w, int h, int r);
//利用均值模糊进行拟合 高斯模糊
private static native void initCBlur2(int[] pix, int w, int h, int r);
//加载native模块
static {
System.loadLibrary("blur_jni");
}
}
附:
JNI的详细教程
http://blog.csdn.net/hui12581/article/details/44832651