图像的傅里叶变换

参考:

  1. 傅里叶变换学习
  2. 图像变换
  3. 第四章 图像变换
  4. 图像傅里叶变换
  5. 频谱特性研究

傅里叶定理指出:

  • 任何信号都可以表示成(或者无限逼近)一系列正弦信号的叠加。在一维领域,信号是一维正弦波的叠加,那么想象一下,在二维领域,实际上是无数二维平面波的叠加,$(x,y)$对应的是一维领域的 $t$,而灰度(Brightness Variation)就是其变量对应一维领域的振幅$F(t)$。

二维离散傅里叶变换:


幅度谱、相位谱和功率谱:

  • 幅度图:频域下每一点$(u,v)$的幅度 $F(u,v)$表示的是该频率的平面正弦波在叠加中所占的比例。

  • 相位图:相位图看上去不是很直观,但是与图像结构息息相关

  • 功率谱:
  • 通过相位图和幅度图,我们可以还原$F(u,v)$:

要点分析:

  • 那么(u,v)的物理含义是什么样的?平面波如下图所示,灰度变化快的频率高,也就是频率是指灰度在平面空间的梯度,这是很直观的描述,那么反应在图像上,就是图像中灰度变化比较快的地方,比如噪声,边缘,跳跃部分,背景以及慢变区域代表低频分量。 这里有一个理解的误区我需要指出一下,这个也是一开始困扰我的地方,就是正弦平面波叠加成图像时,并不是简单的叠加,而是不同相位的叠加。回忆一下一维的傅里叶变换,不同的正弦波的相位也是不同,不然怎么可能组成想要的信号波。所以理解相位很重要
  • 我们通常看到的傅里叶频谱图是图像中心化(移频)之后再去掉相位的图像,那么问题来了?在频谱图上,我们知道$(u,v)$的位置对应的是频率,在对于每一个$(u,v)$点的亮度又对应的什么?首先要明确,中心化之后,最低频移动到了中心,从图中可以看出来,中心点的能量最大,也就是比重最高。不知道我理解的对不对,看频谱图时要去原图割裂来看,然后再回到原图中区。

图像处理变换的目的:

通过对图像信息进行变换,使得能力保持但重新分配,有利于加工、处理或滤除不必要的信息,加强或提取感兴趣的部分或特征。

  1. 提取图像特征:如直流分量,目标边缘(高频分量)
  2. 图像压缩:蒸饺变换能量集中,对集中(小)部分进行编码
  3. 图像增强:低通滤波,平滑噪声,高通滤波,锐化边缘等

什么是空间频率:

  1. 对图像信号而言,空间频率是指单位长度内亮度也就是灰度做周期性变化的次数,也就是变化剧烈程度的指标,可以理解灰度在平面空间上的梯度。
  1. 我们对图像进行了二维傅里叶变换得到了频谱图,实际上是图像梯度的分布图,注意频谱图与原图像的各点不存在一一对应的关系,即使在不移频的情况下也没有。图像上某一点与它领域点差异的强弱,实际上就是梯度,而该梯度就是对应于频谱图的某一点,而这个梯度也就是对应$(u,v)$某一点,但是这一点的大小或者说幅度值(亮暗)是由整体图像决定的,该梯度(该频率)对应的平面波的所占成分的大小。(能量的角度)
  1. 移频后频谱图的中心为原始图像的平均亮度,频率为0,从图像中心向外,频率增高,高亮度表明该频率特征明显。此外,注意到,频率图像中心明显的频率变化方向与原图像中的物方向垂直,也就是说如果原始图像中有多种水平分布的物,那么频率域图像在垂直方向的频率变化比较明显。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,378评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,356评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,702评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,259评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,263评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,036评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,349评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,979评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,469评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,938评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,059评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,703评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,257评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,262评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,501评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,792评论 2 345

推荐阅读更多精彩内容