欧拉定理

欧拉函数的定义:

在数论中,对于正整数N,少于或等于N ([1,N]),且与N互质的正整数(包括1)的个数,记作φ(n)。

φ函数的值:

φ(x)=x(1-1/p(1))(1-1/p(2))(1-1/p(3))(1-1/p(4))…..(1-1/p(n)) 其中p(1),p(2)…p(n)为x

的所有质因数;x是正整数; φ(1)=1(唯一和1互质的数,且小于等于1)。注意:每种质因数只有一个。

例如:

φ(10)=10×(1-1/2)×(1-1/5)=4;

1 3 7 9

φ(30)=30×(1-1/2)×(1-1/3)×(1-1/5)=8;

φ(49)=49×(1-1/7)=42;

欧拉函数的性质:

(1) p^k型欧拉函数:

若N是质数p(即N=p),φ(n)= φ(p)=p(1-1/p)=p-1。 所以除了p自己本身外,[1,p-1]的任何数都与p互质,所以φ(p)=p-1,另外由公式得到φ(n)= φ(p)=p(1-1/p)=p-1。

若N是质数p的k次幂(即N=p^k), φ(n)= p^ k -p^(k-1) =(p-1)p^(k-1)。y因为除了p的倍数以外,其他数都与N互质。而是p的倍数的数有p,2p,3p...p^(k-1)*p,一共有p ^ ( k- 1)个,所以有p^k -p ^ (k-1) =(p-1)p^(k-1)个数与p互质。

(2)mn型欧拉函数

设m,n为正整数,若m,n互质,φ(mn)=(m-1)(n-1)=φ(m)φ(n)。容易知道mn与m的倍数或者n的倍数不互质,而n的倍数有n,2n,3n...mn,共有m个,m的倍数有m,2m,3m...nm,共有n个,又mn重复计数,所以共有n+m-1个,至于k1*n和k2*m中会不会有重复计数呢?因为n,m为质数,要使得k1n=k2m,那么k1=n,k2=m;所以与mn互质的有m*n-(n+m-1)=(m-1)*(n-1)=φ(m)φ(n)

(3)特殊性质:

若n为奇数时,φ(2n)=φ(n)。

对于任何两个互质 的正整数a,n(n>2)有:a^φ(n)=1 mod n (恒等于)此公式即 欧拉定理

当n=p 且 a与素数p互质(即:gcd(a,p)=1)则上式有: a^(p-1)=1 mod p (恒等于)此公式即 费马小定理

如果(a,c)互质,且c是素数,则(a ^ b)%c=a ^ ( b % ( phi(c) ) )%c , phi(c) 是指c的欧拉函数

四 欧拉函数的延伸:
( 一 )
小于或等于n的数中,与n互质的数的总和为:φ(n) * n / 2 (n>1)。
( 二 )
定义:n的原根x满足条件0<x<n,并且有集合{ (xi mod n) | 1 <= i <=n-1 } 和集合{ 1, ..., n-1 }相等

定理:如果p有原根,则它恰有φ(φ(p))个不同的原根。

例题 a ^ b ^ c mod 1000000007

#include<stdio.h>
#include <string.h>
using namespace std;
#define Mod 1000000007
int powMod(int a,int b,int c)
{
    int res=1,base=a;
    while(b)
    {
        if(b&1) res=((long long)res*base)%c;
        base=((long long)base*base)%c;
        b>>=1;
    }
    return res;
}
int main()
{

    int a,b,c;
     while(~scanf("%d%d%d",&a,&b,&c))
        {
        int resul=powMod(b,c,Mod-1);
        printf("%d\n",powMod(a,resul,Mod));

        }
}

求欧拉函数的方法
( 一 ) 根据定义来实现

int euler(int n)
{
    int m=sqrt(n+0.5);
    int res=n;
    for(int i=2;i<=m;i++)
    {
        if(n%i==0)
        {
            res=res/i*(i-1);
            while(n%i==0) n/=i;
        }
    }
    if(n>1) res=res/n*(n-1);
    return res;
}

( 二 )筛选法打欧拉函数表

const int MAXN=1000010;
int phi[MAXN];
void phi_table(int n)
{
    memset(phi,0,sizeof(phi));
    phi[1]=1;
    for(int i=1;i<=n;i++)
    {
        if(phi[i]==0)//i是质数
        {
            for(int j=i;j<=n;j+=i)
            {
                if(phi[j]==0) phi[j]=j;
                phi[j]=phi[j]/i*(i-1);
            } 
        }
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容

  • Base64 base64是一种基于64个可打印字符来表示二进制数据的表示方法.严格来说它只能算作一种编码方式.B...
    miku酱啦阅读 1,177评论 0 3
  • 前文再续,书接上一回,我们说到费尔马小定理,这里我们...... Mod数为合数时的算术运算 同样的Python代...
    Bintou老师阅读 1,067评论 0 1
  • 这是去年12月在CSDN写的一篇加密算法文章 现在决定在简书写博客 移植过来方便复习再理解。 最近算法课老师要求小...
    icecrea阅读 1,265评论 1 1
  • decode(字段或字段的运算,值1,值2,值3) 这个函数运行的结果是,当字段或字段的运算的值等于值1时,该函数...
    forever_smile阅读 1,047评论 0 0
  • 婚姻是个躯壳,或者寄生体 我这个虚无的,无法光明正大生存的灵魂 必须借此居住,仿佛这样 才能得以永生 我还得生个孩...
    叮咚的你阅读 320评论 0 1