HashMap源码分析——put和get(三)
链接
上一节 : HashMap源码分析——put和get(二)
2 HashMap的put函数
2.5.2 回顾
我们在上两节主要说了以下内容:
- HashMap的存储结构
- HashMap的构造函数(一共有四个我们说了三个)
- HashMap中的几个字段 : 默认初始容量、阈值、加载因子、最大容量
- HashMap中的几个方法 : 扰动函数
-
put
函数中如何确定节点的索引 : (length - 1) & hash - 初始化数组
- 如何判断key值相等 : 两个必不可少的条件
主要是putVal()
函数说了下面的几个东西
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 数组为空的时候初始化数组
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 确定节点所要存储的数组索引,如果当前位置为空,直接占座
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
// 当前数组索引不为空
Node<K,V> e; K k;
// 判断key是否相等 如果相等 直接替换
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// ...... 还没有要开始的知识点
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// ...... 还没有要开始的知识点
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 替换
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
// 这里还没有说
if (++size > threshold)
resize();
// 一个目前没有任何用处的函数
afterNodeInsertion(evict);
return null;
}
2.5.3 当是一个链表的时候
我们先来看这里 :
p = tab[i = (n - 1) & hash]
// ...
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 当p是一个红黑树的时候
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 当p是一个链表的时候
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
在这之前,我们需要先知道,当某个节点下面的链表足够多时,需要把链表转成红黑树的形式,所以,头结点可能会是一个红黑树类型的,也可能是一个链表类型的 目前只说当p是一个链表的时候。
(可能说完之后就开始学红黑树了,反正需要学习的东西还很多,努力吧骚年)
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
// 把新的节点放到链表的尾部
p.next = newNode(hash, key, value, null);
// 如果链表节点大于等于8 (别忘记binCount是从0计数的)
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
// 将链表转换成红黑树
treeifyBin(tab, hash);
break;
}
// 如果在遍历链表的过程中发现了key值重复的节点 进行替换
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
上边的代码比较容易理解,就是一个遍历链表的过程 : 插入到链表的尾部,如果遇到key相同的替换并跳出遍历,如果链表长度大于等于8,将链表转成红黑树
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
// ...
if (++size > threshold)
resize();
// 目前没有卵用的代码
afterNodeInsertion(evict);
return null;
}
我们发现,每当put一个节点时候,size都会做++操作,然后判断是否大于阈值,如果大于阈值,就执行resize()
,不难推测出,resize()
不仅可以做数组初始化操作,还可以进行数组的扩容,我们来看数组是怎么进行扩容的。
2.6 resize()扩容操作
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
先来看上面的一段代码 :
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
// 如果旧数组不为空
if (oldCap > 0) {
// 如果旧的数组容量已经超过了最大容量值,直接将阈值变成最大值,以后都不会扩容了
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 新数组的容量 = 旧的数组容量 * 2
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
// 新的阈值 = 旧的阈值 * 2
newThr = oldThr << 1; // double threshold
}
// 初始化数组走这里
// 如果构造函数定义了数组初始容量
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
// 如果构造函数没有定义初始容量
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 构造函数中定义了初始容量 在这里计算阈值
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
// 阈值(再也不用于存储数组容量了)
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
// 新数组 (可用于数组初始化,也可用于扩容)
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
但是如果扩容只创建一个新的数组也不行啊,看接下来怎么把“钉子户”挪到新的地方去:
if (oldTab != null) {
// 遍历旧的数组 看有没有钉子户
for (int j = 0; j < oldCap; ++j) {
// 用一个e来表示数组上的节点
Node<K,V> e;
// 先来判断一下数组上有没有节点 只要不为空
if ((e = oldTab[j]) != null) {
// 只要不为空 先把头结点制空
oldTab[j] = null;
// 如果下面没有节点了 只有他孤身一人
if (e.next == null)
// 重新计算索引值
newTab[e.hash & (newCap - 1)] = e;
// 如果你是一个红黑树的头结点
else if (e instanceof TreeNode)
// 看起来是红黑树的一些操作
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
// 如果你是一个链表 (长度不要大于8)
// 你就应该进行以下操作
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
扩容时,如果是一个链表,将会进行以下操作 :
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
我们先来看这一行 :
if ((e.hash & oldCap) == 0) {
// ...
}
我们好像在前面见过类似的 是重新计算索引的 :
e.hash & (newCap - 1)
那么e.hash & oldCap
是做什么的呢?
我们先做一个示例 : oldCap = 32 newCap = 64
下面是重新计算索引的示例 :
newCap = 64 newCap - 1 = 63
0000 0000 0001 1111 oldCap - 1 旧索引值
0000 0000 0011 1111 newCap - 1 新索引值
& 0010 1010 01?0 0110 hash(key)
我们发现,某个节点是否需要挪动位置,完全取决于?的位置 当?为0的时候 不需要挪动位置,当?为1的时候,需要挪动位置。
然后,HashMap的开发人员发现了更为高级的判断方式 :
0000 0000 0010 0000 oldCap
& 0101 1101 01?0 1010 hash(key)
无论hash值是多少,如果?为0,那oldCap&hash结果就为0,如果?为1,那么oldCap&hash的结果就不是0,所以,在判断某个节点是否需要挪动位置的时候,oldCap&hash和(newCap-1)&hash的效果是一样的。
美团的博客论坛中有更为详细的解释 : Java 8系列之重新认识HashMap
经过观测可以发现,我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。看下图可以明白这句话的意思,n为table的长度,图(a)表示扩容前的key1和key2两种key确定索引位置的示例,图(b)表示扩容后key1和key2两种key确定索引位置的示例,其中hash1是key1对应的哈希与高位运算结果。
元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:
综上所述,oldCap & hash可以判断元素是否需要重新移动位置。
下一节 : HashMap源码分析——put和get(四)