万丈高楼平地起,为了完成一个三阶魔方,本篇文章先达成一个小目标:打造一个一阶魔方。一阶魔方是什么鬼(其实我也想笑,实际上谁会去玩一个一阶的魔方)?对啰,就是一个正方体。把玩魔方时需要观察各个面,所以需要有个旋转魔方的功能,这次我们就做一个可以通过滑动手势全方位旋转的一阶魔方。
静态的正方体
我们使用GLKit绘制一个正方体,GLKit是对OpenGL ES 的封装,内部帮我们做了很多事情,可以简化编程。我们知道,正方体有6个面,8个顶点。
定义数组:
static GLKVector3 vertices[8];
static GLKVector4 colors[6];
static GLKVector3 triangleVertices[36];
static GLKVector4 triangleColors[36];
初始化数据:
vertices[0] = GLKVector3Make(-0.5, -0.5, 0.5); // Left bottom front
vertices[1] = GLKVector3Make( 0.5, -0.5, 0.5); // Right bottom front
vertices[2] = GLKVector3Make( 0.5, 0.5, 0.5); // Right top front
vertices[3] = GLKVector3Make(-0.5, 0.5, 0.5); // Left top front
vertices[4] = GLKVector3Make(-0.5, -0.5, -0.5); // Left bottom back
vertices[5] = GLKVector3Make( 0.5, -0.5, -0.5); // Right bottom back
vertices[6] = GLKVector3Make( 0.5, 0.5, -0.5); // Right top back
vertices[7] = GLKVector3Make(-0.5, 0.5, -0.5); // Left top back
colors[0] = GLKVector4Make(0.000, 0.586, 1.000, 1.000); // 湖蓝
colors[1] = GLKVector4Make(1.0, 0.0, 0.0, 1.0); // 红
colors[2] = GLKVector4Make(0.119, 0.519, 0.142, 1.000); // 暗绿
colors[3] = GLKVector4Make(1.000, 0.652, 0.000, 1.000); // 橙
colors[4] = GLKVector4Make(1.000, 1.000, 0.000, 1.000); // 黄
colors[5] = GLKVector4Make(1.0, 1.0, 1.0, 1.0); // 白
//每个面需要6个点描述(2个三角形拼合而成),显然有些点是共用的,采用顶点索引,对应8个顶点
int vertexIndices[36] = {
// Front
0, 1, 2,
0, 2, 3,
// Right
1, 5, 6,
1, 6, 2,
// Back
5, 4, 7,
5, 7, 6,
// Left
4, 0, 3,
4, 3, 7,
// Top
3, 2, 6,
3, 6, 7,
// Bottom
4, 5, 1,
4, 1, 0,
};
for (int i = 0; i < 36; i++) {
triangleVertices[i] = vertices[vertexIndices[i]];
triangleColors[i] = colors[i/6];
}
屏幕绘制
-(void)update{
CGSize size = self.view.bounds.size;
float aspect = fabs(size.width/size.height);
GLKMatrix4 projectionMatrix = GLKMatrix4MakePerspective(GLKMathDegreesToRadians(65), aspect, 0.5, 15);
GLKMatrix4 modelviewMatricx = GLKMatrix4Translate(GLKMatrix4Identity, 0,0, -3);
modelviewMatricx = GLKMatrix4Multiply(modelviewMatricx,_rotateMatrix4);
self.cube.effect.transform.modelviewMatrix = modelviewMatricx;
self.cube.effect.transform.projectionMatrix = projectionMatrix;
}
- (void)draw {
[effect prepareToDraw];
glEnable(GL_DEPTH_TEST);
glEnable(GL_CULL_FACE);
glEnableVertexAttribArray(GLKVertexAttribPosition);
glVertexAttribPointer(GLKVertexAttribPosition, 3, GL_FLOAT, GL_FALSE, 0, triangleVertices);
glEnableVertexAttribArray(GLKVertexAttribColor);
glVertexAttribPointer(GLKVertexAttribColor, 4, GL_FLOAT, GL_FALSE, 0, triangleColors);
glDrawArrays(GL_TRIANGLES, 0, 36);
glDisableVertexAttribArray(GLKVertexAttribPosition);
glDisableVertexAttribArray(GLKVertexAttribColor);
}
手势操作旋转立方体
功能描述:
通过触摸手势操作,实现全方位旋转。
思路:
构建一个三维球空间,通过屏幕的二维触摸轨迹模拟三维的球平面的滑动轨迹。
数学建模,如下图所示:
假设屏幕触摸点为B,我们将其对应为球面上的点A,OB为OA在xy平面上的投影。不难看出二维与三维的映射关系。
令A点坐标为(a,b,c),B点坐标(a,b),OA长度为R, 则有
a^2 + b^2 + c^2 = R^2
。根据时间片内手指滑动的方向求出球旋转的轴向量。
二维OB向量转为三维OA向量的算法:
_ball.radius=170;
_ball.origin=GLKVector3Make(0, 0, 0);
//二维OB向量转为三维OA向量的算法
-(GLKVector3)touchPointVector3FromVector2: (GLKVector2)vector2 {
GLfloat x,y,z;
x=vector2.x;
y=-vector2.y;
GLfloat safeRadius = _ball.radius-1;
// 超出圆形区域的处理
if(safeRadius < GLKVector2Length(vector2)) {
float theta = atan2f(y, x);
x = safeRadius * cosf(theta);
y = safeRadius * sinf(theta);
}
z = sqrtf(square(_ball.radius) - square(x) - square(y));
GLKVector3 v=GLKVector3Make(x,y,z);
return GLKVector3MultiplyScalar( GLKVector3Normalize(v), _ball.radius) ;
}
函数说明:
GLKVector3MultiplyScalar
返回通过将向量的每个分量乘以标量值创建的新向量。
手指滑动过程中的旋转矩阵:
_oldMatria4=GLKMatrix4Identity;
-(GLKMatrix4)touchMoveAtX:(GLfloat)x AtY:(GLfloat)y{
isMoved=YES;
GLKVector3 movePoint= [self touchPointVector3FromVector2:GLKVector2Make(x-screenW*0.5, y-screenH*0.5)];
return GLKMatrix4Multiply(GLKMatrix4RotateWithVector3(GLKMatrix4Identity,
acosf(GLKVector3DotProduct(movePoint,_touchPoint)/(GLKVector3Length(movePoint)*GLKVector3Length(_touchPoint))),
GLKVector3CrossProduct( _touchPoint,movePoint))
,_oldMatria4);
}
函数说明:
GLKVector3DotProduct
返回两个向量的点积。
GLKVector3CrossProduct
返回两个向量的交叉乘积。
GLKMatrix4 GLKMatrix4RotateWithVector3(GLKMatrix4 matrix, float radians, GLKVector3 axisVector)
矩阵matrix绕axisVector向量旋转radians,返回新矩阵。
#pragma mark 触屏处理
-(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event{
UITouch *touch = [touches anyObject];
CGPoint touchPoint = [touch locationInView:self.view];
_tapCount=[touch tapCount];
if (_tapCount == 2) {
}else if (_tapCount == 1){
[self.trackBall touchDownAtX:touchPoint.x AtY:touchPoint.y];
}
}
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event{
UITouch *touch = [touches anyObject];
CGPoint point = [touch locationInView:self.view];
if (_tapCount == 1){
[self.trackBall touchUpAtX:point.x AtY:point.y];
self.cube.effect.transform.modelviewMatrix = _rotateMatrix4;
}
}
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event{
UITouch *touch = [touches anyObject];
CGPoint point = [touch locationInView:self.view];
if (_tapCount == 2) {
}else if (_tapCount == 1){
_rotateMatrix4 = [self.trackBall touchMoveAtX:point.x AtY:point.y];
self.cube.effect.transform.modelviewMatrix = _rotateMatrix4;
}
}
本文demo源码 传送门