一个余数问题的思考

刚刚在贴吧上看到一个很简单的算法小问题,顺便看到了很多人不同的思路。我觉得很有意思,所以也来研究一下。

问题如下:

一筐鸡蛋:
1个1个拿,正好拿完。
2个2个拿,还剩1个。
3个3个拿,正好拿完。
4个4个拿,还剩1个。
5个5个拿,还差1个。
6个6个拿,还剩3个。
7个7个拿,正好拿完。
8个8个拿,还剩1个。
9个9个拿,正好拿完。
问:筐里最少有几个鸡蛋?

题目很简单,我们可以直接用暴力穷举法。这当然是最简单的办法, 下面是这种方法的Kotlin代码。运行之后,得到结果为1449。

fun answer1() {
    var n = 0
    while (true) {
        if (n % 2 == 1 && n % 4 == 1 && n % 5 == 4 && n % 6 == 3 && n % 7 == 0 && n % 8 == 1 && n % 9 == 0) {
            break
        }
        n++
    }
    println(n)
}

当然暴力穷举虽然简单,但是效率并不是很高,对于这个问题来说,循环运行了1449次。我们可以分析题目特点,简化循环的运行次数。

首先来看看题目,很明显第一句是废话,因为任何正整数都可以被1整除。然后是第二句,这表明这个数是一个奇数。第三句和第九句明显重复,可以被9整除,那么必然也可以被3整除,所以只看第九句就可以了。还有第五句需要注意一下,因为这里是被5除还差1个,所以是还剩4个。我看贴吧里有些人审题不严,导致做了一个错误答案。

经过一番分析,上面的题目就变成了下面这样的。

奇数
能被9整除
除以4余1
除以5余4
除以6余3
能被7整除
除以8余1


注意到7和9互质,所以答案必然是63的倍数,而且还是个奇数,所以是奇数倍。所以我们的代码可以改进一下。代码中的count用于统计循环次数,这次结果和上次一样,但是循环次数仅为12次,每次要判断的条件也减少了很多。

fun answer2() {
    var n = 63
    var count = 0
    while (true) {
        count++
        if (n % 4 == 1 && n % 5 == 4 && n % 6 == 3 && n % 8 == 1) {
            break
        }
        n += 63 * 2
    }
    println("n=$n,count=$count")

}

当然还可以进一步优化。由于这个数除以5余4,可以想到该数的个位数字不是4就是9,但是由于是奇数,那么个位数必然是9,而且这个数是63的倍数。而除以4余1除以8余1这两个条件可以简化为除以8余1。所以最后代码就变成了这样,循环仅仅循环了3次。

fun answer3() {
    var n = 63 * 3
    var count = 0
    while (true) {
        count++
        if (n % 8 == 1) {
            break
        }
        n += 630
    }
    println("n=$n,count=$count")
}

我还看到贴吧上有人说用同余定理算,但是我比较笨,没理解怎么用同余定理来计算。不过以前我倒是遇到过类似的题目,所以最后来介绍一下。

我遇到的题目类似下面这样:

一个数除以2余1,除以3余2,除以4余3,这个数最小是几?

这个问题倒是有一个简便方法,由于余数恰好和除数只差1,所以如果在被除数上加1,那么它就可以同时被2、3、4整除,所以这个数最小应该是2、3、4的最小公倍数再减1,所以应该是23 。

回到我们这道题目来说,由于余数每次都不一样,所以没办法这么做。不过我想了想,能不能通过加一个数,让余数都变得相同。由于我数学不好,也不懂数论这些专业知识,所以直接用代码模拟一下,发现确实可以得到一个数,让答案加上这个数以后,所有余数都相同。这个数是1071,这时候余数都是0 。Kotlin代码如下。

fun cal() {
    val numbers = hashMapOf(
            2 to 1,
            3 to 0,
            4 to 1,
            5 to 4,
            6 to 3,
            7 to 0,
            8 to 1,
            9 to 0)
    var n = 0
    while (true) {
        n++
        for (k in numbers.keys) {
            val old = numbers[k]
            numbers[k] = (old!! + 1) % k
        }
        val set = numbers.values.toSet()
        if (set.size == 1) {
            break
        }
    }
    println("这个数是:$n")
}

有了这个数,我们就可以用上面的方法来计算结果了。答案加上1071之后,可以被2-9的所有数整除,所以2-9的最小公倍数再减去1071,就是我们要求的答案。而2-9的最小公倍数也就是5-9的最小公倍数,是2520,再减去前面的1071,正好就是最一开始我们得到的答案1449!

如果大家有更好的思路,也可以告诉我,让我们互相学习,共同进步!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,378评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,356评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,702评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,259评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,263评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,036评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,349评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,979评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,469评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,938评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,059评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,703评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,257评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,262评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,501评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,792评论 2 345

推荐阅读更多精彩内容