涨知识 | 5G的调制方式,到底是怎么实现的?

大家好,今天我们来聊聊调制。

说到调制,我想很多同学马上会联想到这些关键词:BPSK、QPSK、调幅、调相、QAM、星座图……

众所周知,调制和解调是通信基本业务流程中的重要组成部分。没有它们,我们的移动通信根本无法实现。

那么,究竟什么是调制?为什么要调制?5G又是怎么调制的呢?

接下来,我们逐一介绍。

调制是做什么用的呢?

让我们看一下生活中的一个例子:

我们每天都在出行。出行的时候,我们会根据行程选择适合的交通工具。

乘坐不同的交通工具,出行的速度也会有快有慢。

整个过程,大概就是这样一个模型:

实际上,通信系统和这个模型类似。上面的出行模型,是把人从出发点运输到目的地。而通信系统,是把数据信号从发送端传输到接收端。

我们进行以下转换:

就可以类比出一个简单的通信模型:

看出来了吧?“调制”,就像为信号找一个交通工具,让它载着信息穿过信道到达目的地。

我们知道,在无线信道中,信号是以电磁波的形式传递的。

那么,电磁波怎么来传递信息呢?

我们先来举一个“用水果传递信息”例子。

例如,我们要传递0和1,可以让苹果代表0,香蕉代表1。

我们发送给接收端,接收方收到后一看是苹果就知道是发送的是0,一收到香蕉,就知道发送的是1。

换一种方式,如果只能用苹果来传递信息呢?

我们约定让红苹果代表0,绿苹果代表1。

接收方一看是红苹果,就知道是发送的是0。收到绿苹果,就知道发送的是1。

再换一种方式。如果只有红苹果,怎么传递信息呢?

我们可以用大的红苹果来代表0,小的红苹果代表1。一看是大红苹果,就知道是发送的是0。收到小红苹果,就知道发送的是1。

在这个过程中,我们其实用的是水果的种类、颜色、大小这3个特征来传递信息的。

类似的,电磁波可以用正弦波来描述。一个正弦波也有3大特征,幅度,相位,频率。我们可以利用电磁波的这3大特征来传递信息。

下面的公式(1),描述了一个正弦波信号:

所谓调幅、调频、调相,就是下图的样子:

看出来了没?0和1,被“调”进了不同的电磁波波形之中。

5G速度那么快,它是怎么调制的呢?

在3GPP协议(TS 38.201)中,定义了5G支持的调制方式如下:

按照使用的载波的特征的不同,5G采用的调制方式可以分为两大类:

载波的相位变化,幅度不变化:π/2-BPSK, QPSK。这就是前面说的PSK(Phase-Shift keying相移键控)。

载波的相位和幅度都变化:16QAM, 64QAM,256QAM。这一类专业名词叫做QAM(Quadrature Amplitude Modulation,正交振幅调制)

星座图

各种调制方式之间的差异,还是不太容易理解。

想一想,为什么我们能很容易区分各种水果的不同?(什么是苹果,什么是香蕉,什么是红苹果,什么是大苹果。)

这是因为我们见过实物,看到过不同状态的水果。

那么,我们能不能把调制方式也用图表示起来呢?

可以。

为了直观的表示各种调制方式,我们引入一种叫做星座图的工具。星座图中的点,可以指示调制信号的幅度和相位的可能状态。


BPSK定义了2种相位,分别表示0和1,因此BPSK可以在每个载波上调制1比特的信息。

π/2-BPSK是BPSK在序列的奇数位时调制信号相位偏移π/2,序列的偶数位时和BPSK调制信号的相位一样,也就是π/2-BPSK定义了4种相位来表示0和1。

QPSK全称是正交相移键控,它定义了4个不同的相位,分别表示00、01、10、11,因此QPSK可以在每个载波上调制2比特的信息。

16QAM:一个符号代表4bit。

64QAM:一个符号代表6bit。

256QAM:一个符号代表8bit。

来个动图,帮助理解:

QAM示意图(来自cisco)

从星座图中可以看出PSK调制信号的幅度不变,相位有变化。QAM调制信号的幅度和相位在变化。

正是因为每个符号能代表的bit数不断提升,使得携带的信息量提升,最终让这个“交通工具”能显著提升速率。

可能大家觉得5G好像也不是很难的样子嘛。既然我们已经有了通信模型和星座图两大法宝,是不是可以自己打造一套下一代通信系统出来呢?

Hoho,你以为256QAM就是那么简单就搞出来的吗?

上图!

3GPP 38.211协议中定义的5G调制方式的映射关系

懵圈了!有木有? 

通信搞到最后,都是数学!

调制和解调原理

我们再简单讲一下调制和解调的原理。

5G的各种调制方式,都可以使用IQ调制解调来实现。

我们从公式1出发,进行各种神奇的公式转换。

将公式2画成框图,这个就是IQ调制: 

解调是把接收到的调制信号提取出来的过程,调制信号经过解调转换为原始的信号。解调的过程可以通过下面的公式来解释。

通过公式3可以看到,接收信号在乘以对应相位的载波后,进行积分,可以得到原始的信号,将公式3画成框图,这个就是IQ解调。

将2个框图结合起来,我们下面给出IQ调制和解调的框图。

IQ调制可以用复数的形式进行理解。

调制的公式描述:

解调的公式描述:

 对应的我们给出复数形式的框图。

这个框图搭配上前面3GPP协议里面的5G调制映射关系,就是一个较为完整的5G的调制和解调过程。

是不是彻底懵圈啦?调制解调,从入门到放弃! 

关注我,共同探寻科技“物”语

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 200,612评论 5 471
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,345评论 2 377
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 147,625评论 0 332
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,022评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,974评论 5 360
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,227评论 1 277
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,688评论 3 392
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,358评论 0 255
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,490评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,402评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,446评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,126评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,721评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,802评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,013评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,504评论 2 346
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,080评论 2 341

推荐阅读更多精彩内容