2018-01-09 Hadoop Platform and Application Framework -- Lesson 3 Hadoop Basic Modules Introdution

Overview of Hadoop Stack

HDFS holds data. YARN is resource manager. MapReduce is one option of engine, Spark is another. Tez is alos one option in Hadoop 2.0, where the applications are layered on top of that.

HBase - a scalable data warehouse with support for large tables

Hive - a data warehouse infrastructure that provides data summarization and ad hoc quering

pig - A high-level data-flow language and execution framework for parallel computation

Spart - a fast and general compute engune for Hadoop data. Wide range of applications -ETL, Machine Learning, stream processing, and graph analytics.


Cloudera Setup:


HDFS and HDFS2

Concept:

    Scalable distributed filesystem

    Distribute data on local disks on several nodes

    Low cost commodity hardware

Design goals:

    Resilience - recover from nodes or nodes' components failing

    Scalability - spreading out the data to blocks on lots of nodes ; namespace capacity

    Application Locality - data scale but application does not. It localise on each compute node and keep compute task on the node with data

    Portability - means commodity hardware widely accepted about OS type and not much change needed.

Architecture:

    Single NameNode 

        Metadata is info about filesystem state, block information, edit & transaction info, locks

    Multiple DataNodes - Data is spreaded across to blocks on lots of nodes 

        Manange storage - blocks of data (downward) 

        Serving read/write requests from clients (upward)

        Block creation, deletion, replication (horizontally) - Replication is 3 times by default


   From Hadoop2.0 (Federation):

    Multiple NameNode but not single any more. Multiple namespaces providing scalability. Each namespace has a block pool. Metadata is stored in block pools. Pools are spread out over all data nodes. 

    Standby NameNode taking snapshot, but failover is handling manually.

    Heterogeneous Storage - Archive storage, SSD, Ram_disk



MapReduce Framework

Basic idea: (1)Job splits data into chunks, and MapBus maps tasks to all the (2)compute nodes to process chunks. Once the process chunks of data is finished, the framework sorts the map's output. Reduce tasks use the sorted map's output as input to perform some reduction opetaions.

Typically, compute and data nodes are the same, so MapReduce tasks and HDFS are running on the same nodes.

Before Hadoop 2.0 YARN burn:

Single master JobTracker (1)  - schedules, monitors, and re-executes failed tasks. It's the main daemon in Hadoop. It initiates TaskTrackers on SlaveNodes (compute nodes/data nodes)

One slave TaskTracker per cluster node (2) - executes tasks from JobTracker requests (with HDFS handler).


YARN

From MapReduce. Main idea : separate resource management and job scheduling / monitoring.

Overall/Coordiante -- ResourceManager : on Master Node, gets job requests from clients, gets Node Status from NodeManagers about what resources are available, gets status of applications from ApplicationMaster.

Resource Management part -- NodeManager : on each node. Like Capacity scheduler / fair share scheduler - choosing container/allocatiing resource based on capacity and queues to jobs

Job Scheduling / monitoring part -- ApplicationMaster : one for each application on certain nodes. All of them together break out that piece of original single JobTracker

So, YARN is doing MapReduce's (1) part, but it is more deeper from container level for scheduling jobs.

YARN has features below also:

    High Availability ResouceManager in the newest Hadoop release - One Standby RM.

    Timeline server - trace storage/application history like how many map/reduce/resource are done/used.

    Cgourps - manage resources used by containers, as it also support Secure Containers with restrictions to particular users.

    Restful API providing web services for cluster access.



Lesson 3 Slides

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容