2017.11.10

人工智能在金融领域的最大潜力是什么?

就金融领域而言,人工智能属于fintech(financial technology)一系列技术创新中的一种,可界定为是基于大数据、云计算、人工智能、区块链等技术全面应用于支付清算、借贷融资、财富管理、零售银行、保险、交易结算等金融领域。实现金融+科技高度融合
人工智能在以下三个方面“跑赢”时间:

  • 快速吸收信息,将信息转化为知识的能力。人工智能在对文本、语音和视频等非结构化信息的获取方面出现较大飞跃,人类手工手机、整理、提取非结构化数据中有用信息的能力已步入人工智能程序,特别是文本信息。
  • 在领域建模和大数据分析基础上预测未来的能力。时间最本质的属性就是其箭头的不可逆。未来是不确定的,但又是有规律可循的。
  • 在确定规则下优化博弈策略的能力。价值交换领域充满了博弈,博弈皆需解决局势判断和最有对策搜索两个基本问题。人工智能由于人类,第一因为人工智能可以比人更充分地学习有史以来的所有公开数据;第二,人工智能可以比人更充分地利用离线时间采用左右互博来增强学习策略;第三,人工智能可以几万台带脑共同协作,相对于几万人的协作而言不存在人类面对利益考量以及各种不淡定乃至贪婪的表现。所以人工智能在博弈环节的普遍应用,也是一个必然的趋势。
    量化投资已有实际案例,对标全球,世界最大的对冲基金桥水联合在2013年开启一个新的人工智能团队。Rebellion Research运用机器学习进行量化资产管理于2007年推出了第一个纯投资基金。今年9月末安信证券开发的A股机器人大战5万投资者的结局揭晓,从6月1日至9月的三个月里,以24.06%(年化96%)的累计收益率战胜了98%的用户。机器人运作模式是先从基本面、技术面、交易行为、终端行为、互联网大数据信息、第三方信息等衍化成一个因子库,属于数据准备过程,将因子数据提炼生成训练样本,然后选取机器学习算法进行建模训练,最后保留有效因子生成打分方程输出组合。

机器人大数据量化选股较人类从基本面、公司财务等方面挑选因子量化选股而言更偏向从基本面、技术、投资者情绪行为类等方面挑选因子,对IT技术、数据处理技术的要求较高。

在智能投顾方面(智能金融管家)也已有初步的运用。广义的智能投顾,考虑投资者的财务情况对其进行个人财富精算配置,比如统筹考虑支票、储蓄、投资和养老保险。对于偏好主动进行资产管理的投资者,智能投顾能够根据投资者的问题,智能的分析海量信息给出答案。从国外的实践来看,智能投顾产品主要有投资推荐、财务规划和智能分析三种。具体应用案例如下:1)摩羯投顾:招商银行发布 APP 5.0,“摩羯智投”成为最大看点。摩羯智投运用机器学习算法,试图整合招商银行十多年财富管理实践及基金研究经验,并在此基础上构建以公募基金为底层资产,全球范围配置的“智能基金组合配置服务”。在利率市场化尾声之际,摩羯智投的问世,标志着银行等金融机构应对“储蓄搬家”的应对。对标海外智能投顾的资产管理规模已经从2012年几乎为零增加到2015年底的187亿美元。AT Kearney预测,未来五年,机器人投顾的市场复合增长率将达到68%,到2020年,机器人投顾资产管理规模将突破2.2万亿美元。2)智能报告:人工智能能够自动搜集企业公告、上百万份研报、维基百科等公开知识库等披露信息后通过自然语言处理和知识图谱来自动生成报告。速度为0.4秒/份,60分钟即可生成全市场9000份新三板挂牌公司报告,在时空上的优势由此得以体现。3)信用卡还款:截至2015年末,全国人均持有银行卡3.99张,现代消费模式中,人们已习惯了信用卡或者手机绑定信用卡进行消费。一人多卡的现象有时会让持卡人忘记按时还款,逾期不还款的高额滞纳金会让用户产生损失。此类情况下人工智能能够将用户所有的信用卡集中管理,帮助用户在不同的还款期内合理安排资金,以支付最少的滞纳金。若账户没有余额的情况发生,开发公司会提供比信用卡公司利率更低的贷款,帮助用户还信用卡账单。

人工智能乃至金融科技的创新,是对金融市场、金融机构以及金融服务供给产生重大影响的新业务模式、新技术应用、新产品服务。他与传统金融并不是相互竞争的关系,而是以技术为纽带,相信未来将为有更多人工智能的应用场景出现,让传统金融行业摈弃低效、高成本的环节从而形成良性生态圈循环。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343

推荐阅读更多精彩内容