HanLP用户自定义词典源码分析

标签:通过默认-ohtmlclass配置boolean定义ict

HanLP用户自定义词典源码分析

1. 官方文档及参考链接

关于词典问题Issue,首先参考:FAQ

自定义词典其实是基于规则的分词,它的用法参考这个issue

如果有些数量词、字母词需要分词,可参考:P2P和C2C这种词没有分出来,希望加到主词库

关于词性标注:可参考词性标注

?

2. 源码解析

分析 com.hankcs.demo包下的DemoCustomDictionary.java 基于自定义词典使用标准分词HanLP.segment(text)的大致流程。首先把自定义词添加到词库中:

CustomDictionary.add("攻城狮");CustomDictionary.insert("白富美","nz 1024");//指定了自定义词的词性和词频CustomDictionary.add("单身狗","nz 1024 n 1")//一个词可以有多个词性

添加词库的过程包括:

若启用了归一化,则会将自定义词进行归一化操作。归一化操作是基于词典文件 CharTable.txt 进行的。

判断自定义词是否存在于自定义核心词典中

publicstaticbooleanadd(String word)      {if(HanLP.Config.Normalization) word = CharTable.convert(word);if(contains(word))returnfalse;//判断DoubleArrayTrie和BinTrie是否已经存在wordreturninsert(word,null);      }

?

当自定义词不在词典中时,构造一个CoreDictionary.Attribute对象,若添加的自定义词未指定词性和词频,则词性默认为 nz,频次为1。然后试图使用DAT树将该 Attribute对象添加到核心词典中,由于我们自定义的词未存在于核心词典中,因为会添加失败,从而将自定义词放入到BinTrie中。因此,不在核心自定义词典中的词(动态增删的那些词语)是使用BinTrie树保存的。

publicstaticbooleaninsert(String word, String natureWithFrequency)      {if(word ==null)returnfalse;if(HanLP.Config.Normalization) word = CharTable.convert(word);          CoreDictionary.Attributeatt = natureWithFrequency ==null?newCoreDictionary.Attribute(Nature.nz,1) : CoreDictionary.Attribute.create(natureWithFrequency);if(att ==null)returnfalse;if(dat.set(word, att))returntrue;//"攻城狮"是动态加入的词语. 在核心词典中未匹配到,在自定义词典中也未匹配到, 动态增删的词语使用BinTrie保存if(trie ==null) trie =newBinTrie();          trie.put(word, att);returntrue;      }

将自定义添加到BinTrie树后,接下来是使用分词算法分词了。假设使用的标准分词(viterbi算法来分词):

List vertexList =viterbi(wordNetAll);

分词具体过程可参考:

分词完成之后,返回的是一个 Vertex 列表。如下图所示:

然后根据 是否开启用户自定义词典 配置来决定将分词结果与用户添加的自定义词进行合并。默认情况下,config.useCustomDictionary是true,即开启用户自定义词典。

if(config.useCustomDictionary)        {if(config.indexMode>0)combineByCustomDictionary(vertexList, wordNetAll);elsecombineByCustomDictionary(vertexList);        }

combineByCustomDictionary(vertexList)由两个过程组成:

合并DAT 树中的用户自定义词。这些词是从 词典配置文件 CustomDictionary.txt 中加载得到的。

合并BinTrie 树中的用户自定义词。这些词是 代码中动态添加的:CustomDictionary.add("攻城狮")

//DAT合并DoubleArrayTrie dat = CustomDictionary.dat;  ....// BinTrie合并if(CustomDictionary.trie!=null)//用户通过CustomDictionary.add("攻城狮"); 动态增加了词典{      ....

合并之后的结果如下:

3. 关于用户自定义词典

总结一下,开启自定义分词的流程基本如下:

HanLP启动时加载词典文件中的CustomDictionary.txt 到DoubleArrayTrie中;用户通过 CustomDictionary.add("攻城狮");将自定义词添加到BinTrie中。

使用某一种分词算法分词

将分词结果与DoubleArrayTrie或BinTrie中的自定义词进行合并,最终返回输出结果

HanLP作者在HanLP issue783:上面说:词典不等于分词、分词不等于自然语言处理;推荐使用语料而不是词典去修正统计模型。由于分词算法不能将一些“特定领域”的句子分词正确,于是为了纠正分词结果,把想要的分词结果添加到自定义词库中,但最好使用语料来纠正分词的结果。另外,作者还说了在以后版本中不保证继续支持动态添加自定义词典。以上是阅读源码过程中的一些粗浅理解,仅供参考。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容

  • 常用概念: 自然语言处理(NLP) 数据挖掘 推荐算法 用户画像 知识图谱 信息检索 文本分类 常用技术: 词级别...
    御风之星阅读 9,154评论 1 25
  • 早期在项目中使用ansj分词,但一直停留在会用,所以我抽空学习了一下源码,确实对分词的流程和用法有了进一步的理...
    wlj1107阅读 2,090评论 1 2
  • 我们的车在路边停着,咣当一声,被一辆拖拉机追尾了,后面一侧的车灯给撞碎了。 等我们走到跟前,看到的是一位身上脏兮兮...
    李冰儿阅读 682评论 4 6
  • 中秋时节月正圆,夜幕降临时的天空也是一种美景。 以下两张为夜幕降临时在镇宁校园内拍摄,随意拔了两根狗尾巴草,垂在空...
    低头嗅蔷薇阅读 194评论 0 3