深入理解MessageQueue

在上一篇文章中我们分析了Handler 、Looper、 MessageQueue 、线程之间的关系,简单的说就是:一个线程绑定一个Looper,一个Looper维护一个MessageQueue队列,而一个线程可以对应多个Handler。而在Handler的消息机制中,MessageQueue可能算是最重要的,今天我们就来分析这个类。
在分析之前,先提出两个问题:
1.Handler.sendMessageDelayed()怎么实现延迟的?
2.Looper.loop是一个死循环,拿不到需要处理的Message就会阻塞,那在UI线程中为什么不会导致ANR?

现在,我们带着这两个问题进入MessageQueue的分析中。首先看第一个,Handler.sendMessageDelayed()的源码如下:

public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

可以看出 : 消息被处理的时间 = 当前时间+延迟的时间

至于这个地方为什么要用SystemClock.uptimeMillis() 而不用SystemClock. currentTimeMillis(),这里可以看两者的区别(摘自网上):

System.currentTimeMillis() 方法产生一个标准的自1970年1月1号0时0分0秒所差的毫秒数。该时间可以通过调用setCurrentTimeMillis(long)方法来手动设置,也可以通过网络来自动获取。这个方法得到的毫秒数为“1970年1月1号0时0分0秒 到 当前手机系统的时间”的差。因此如果在执行时间间隔的值期间用户更改了手机系统的时间,那么得到的结果是不可预料的。因此它不适合用在需要时间间隔的地方,如Thread.sleep, Object.wait等,因为它的值可能会被改变。

SystemClock.uptimeMillis()方法用来计算自开机启动到目前的毫秒数。如果系统进入了深度睡眠状态(CPU停止运行、显示器息屏、等待外部输入设备)该时钟会停止计时,但是该方法并不会受时钟刻度、时钟闲置时间亦或其它节能机制的影响。因此SystemClock.uptimeMillis()方法也成为了计算间隔的基本依据,比如Thread.sleep()、Object.wait()、System.nanoTime()以及Handler都是用SystemClock.uptimeMillis()方法。这个时钟是保证单调性,适用于计算不跨越设备的时间间隔。

Handler.sendMessageDelayed()方法最终会调用enqueueMessage方法进入MessageQueue的enqueueMessage方法中:

private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

MessageQueue中最重要的就是两个方法:
1.enqueueMessage向队列中插入消息
2.next 从队列中取出消息

先分析enqueueMessage:

boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {//msg.target就是发送此消息的Handler
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {//表示此消息正在被使用
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {//表示此消息队列已经被放弃了
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;//将延迟时间封装到msg内部
            Message p = mMessages;//消息队列的第一个元素
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
               //如果此队列中头部元素是null(空的队列,一般是第一次),或者此消息不是延时的消息,则此消息需要被立即处理,此时会将这个消息作为新的头部元素,并将此消息的next指向旧的头部元素,然后判断如果Looper获取消息的线程如果是阻塞状态则唤醒它,让它立刻去拿消息处理
          
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                //如果此消息是延时的消息,则将其添加到队列中,原理就是链表的添加新元素,按照when,也就是延迟的时间来插入的,延迟的时间越长,越靠后,这样就得到一条有序的延时消息链表,取出消息的时候,延迟时间越小的,就被先获取了。插入延时消息不需要唤醒Looper线程。
  
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {//唤醒线程
                nativeWake(mPtr);
            }
        }
        return true;
    }

源码中主要的地方我给了注释,可以参考参考。
由此可以看出:
MessageQueue中enqueueMessage方法的目的有两个:
1.插入消息到消息队列
2.唤醒Looper中等待的线程(如果是及时消息并且线程是阻塞状态)
同时我们知道了MessageQueue的底层数据结构是单向链表,MessageQueue中的成员变量mMessages指向的就是该链表的头部元素。

接下来我们再来分析一下取出消息的方法next():

next()方法代码比较多,下面是主要部分,后面省略了一部分IdleHandler的处理逻辑,用于空闲的时候处理不紧急事件用的,有兴趣的自行分析。

Message next() {
    
        final long ptr = mPtr;
        if (ptr == 0) {
           //从注释可以看出,只有looper被放弃的时候(调用了quit方法)才返回null,mPtr是MessageQueue的一个long型成员变量,关联的是一个在C++层的MessageQueue,阻塞操作就是通过底层的这个MessageQueue来操作的;当队列被放弃的时候其变为0。
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            //阻塞方法,主要是通过native层的epoll监听文件描述符的写入事件来实现的。
           //如果nextPollTimeoutMillis=-1,一直阻塞不会超时。
           //如果nextPollTimeoutMillis=0,不会阻塞,立即返回。
           //如果nextPollTimeoutMillis>0,最长阻塞nextPollTimeoutMillis毫秒(超时),如果期间有程序唤醒会立即返回。
            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
           
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    //msg.target == null表示此消息为消息屏障(通过postSyncBarrier方法发送来的)
                    //如果发现了一个消息屏障,会循环找出第一个异步消息(如果有异步消息的话),所有同步消息都将忽略(平常发送的一般都是同步消息)
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // 如果消息此刻还没有到时间,设置一下阻塞时间nextPollTimeoutMillis,进入下次循环的时候会调用nativePollOnce(ptr, nextPollTimeoutMillis)进行阻塞;
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        //正常取出消息
                        //设置mBlocked = false代表目前没有阻塞
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    //没有消息,会一直阻塞,直到被唤醒
                    nextPollTimeoutMillis = -1;
                }

                if (mQuitting) {
                    dispose();
                    return null;
                }

            pendingIdleHandlerCount = 0;
            nextPollTimeoutMillis = 0;
        }
    }


由此可以看出:
1.当首次进入或所有消息队列已经处理完成,由于此刻队列中没有消息(mMessages为null),这时nextPollTimeoutMillis = -1 ,然后会处理一些不紧急的任务(IdleHandler),之后线程会一直阻塞,直到被主动唤醒(插入消息后根据消息类型决定是否需要唤醒)。
2.读取列表中的消息,如果发现消息屏障,则跳过后面的同步消息。
3.如果拿到的消息还没有到时间,则重新赋值nextPollTimeoutMillis = 延时的时间,线程会阻塞,直到时间到后自动唤醒
4.如果消息是及时消息或延时消息的时间到了,则会返回此消息给looper处理。

通过enqueueMessage和next两个方法的分析我们不难得出:
消息的入列和出列是一个生产-消费者模式,Looper.loop()在一个线程中调用next()不断的取出消息,另外一个线程则通过enqueueMessage向队列中插入消息,所以在这两个方法中使用了synchronized (this) {}同步机制,其中this为MessageQueue对象,不管在哪个线程,这个对象都是同一个,因为Handler中的mQueue指向的是Looper中的mQueue,这样防止了多个线程对同一个队列的同时操作。

现在,我们对开篇的第一个问题做个回答:
Handler.sendMessageDelayed()怎么实现延迟的?
前面我们分析了如果拿到的消息还没有到时间,则会重新设置超时时间并赋值给nextPollTimeoutMillis,然后调用nativePollOnce(ptr, nextPollTimeoutMillis)进行阻塞,这是一个本地方法,会调用底层C++代码,C++代码最终会通过Linux的epoll监听文件描述符的写入事件来实现延迟的。

对于第二个问题:
Looper.loop是一个死循环,拿不到需要处理的Message就会阻塞,那在UI线程中为什么不会导致ANR?

首先我们来看造成ANR的原因:
1.当前的事件没有机会得到处理(即主线程正在处理前一个事件,没有及时的完成或者looper被某种原因阻塞住了)
2.当前的事件正在处理,但没有及时完成

我们再来看一下APP的入口ActivityThread的main方法:

public static void main(String[] args) {
  
        ...

        Looper.prepareMainLooper();

        ActivityThread thread = new ActivityThread();
        thread.attach(false);

        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }

        Looper.loop();

        throw new RuntimeException("Main thread loop unexpectedly exited");
    }

显而易见的,如果main方法中没有looper进行死循环,那么主线程一运行完毕就会退出,会导致直接崩溃,还玩什么!

现在我们知道了消息循环的必要性,那为什么这个死循环不会造成ANR异常呢?

我们知道Android 的是由事件驱动的,looper.loop() 不断地接收事件、处理事件,每一个点击触摸或者说Activity的生命周期都是运行在 Looper的控制之下,如果它停止了,应用也就停止了。只能是某一个消息或者说对消息的处理阻塞了 Looper.loop(),而不是 Looper.loop() 阻塞它,这也就是我们为什么不能在UI线程中处理耗时操作的原因。
主线程Looper从消息队列读取消息,当读完所有消息时,主线程阻塞。子线程往消息队列发送消息,唤醒主线程,主线程被唤醒只是为了读取消息,当消息读取完毕,再次睡眠。因此loop的循环并不会对CPU性能有过多的消耗。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容