Hadoop框架下MapReduce中的map个数如何控制

一个job的map阶段并行度由客户端在提交job时决定

客户端对map阶段并行度的规划基本逻辑为:
一、将待处理的文件进行逻辑切片(根据处理数据文件的大小,划分多个split),然后每一个split分配一个maptask并行处理实例
二、具体切片规划是由FileInputFormat实现类的getSplits()方法完成

切分规则如下:
1.简单地按照文件的内容长度进行切片
2.切片大小默认是datanode的切块大小128M
3.切片时不是考虑一个整体数据集,而是针对每一个文件单独切片
  比如待处理数据有两个文件:
    file1.txt 200M
   file2.txt 50M
  经过FileInputFormat的切片机制运算后,形成的切片信息如下:
   file1.txt.split1– 0~128M —–maptask
   file1.txt.split2– 128M~200M —–maptask
   file2.txt.split1– 0~50M —–maptask
三、如何改变切片大小(参数设置)
源码是通过这个方法来规划切片大小的

protected long computeSplitSize(long blockSize, long minSize,
                                  long maxSize) {
    return Math.max(minSize, Math.min(maxSize, blockSize));
  }

    minsize:默认值:1;配置参数: mapreduce.input.fileinputformat.split.minsize   
    maxsize:默认值:Long.MAXValue;  配置参数:mapreduce.input.fileinputformat.split.maxsize
    blocksize:hdfs切片大小

调整切片大小结论:
maxsize(切片最大值):
  参数如果调得比blocksize小,则会让切片变小,而且就等于配置的这个参数的值
minsize (切片最小值):
  参数调的比blockSize大,则可以让切片变得比blocksize还大


控制map个数的核心源码

long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));

//getFormatMinSplitSize 默认返回1,getMinSplitSize 为用户设置的最小分片数, 如果用户设置的大于1,则为用户设置的最小分片数
long maxSize = getMaxSplitSize(job);

//getMaxSplitSize为用户设置的最大分片数,默认最大为long 9223372036854775807L

long splitSize = computeSplitSize(blockSize, minSize,
                            maxSize);

protected long computeSplitSize(long blockSize, long minSize, long maxSize) {
        return Math.max(minSize, Math.min(maxSize, blockSize));
    }

由上述代码可以看出在

maxSize默认等于long(长整形)

blockSize默认在hadoop2.0之后为128M

minSize默认等于1

因此默认的切片大小splitSize等于128M也就是说等于块大小

一个切片对应于一个map任务,因此在默认情况下一个块对应于一个map任务。

要想人为控制map的个数可以从minSize和MaxSize入手。

想要增加map的个数,可以将maxSize调整小于blockSize;想要减小map的个数,可以调整minSize>blockSize。

具体调整可以在job配置中增加如下配置

FileInputFormat.setMinInputSplitSize(job, 301349250);//设置minSize
FileInputFormat.setMaxInputSplitSize(job, 10000);//设置maxSize
在实验中,

测试 文件大小 297M(311349250)

块大小128M

测试代码

FileInputFormat.setMinInputSplitSize(job, 301349250);

FileInputFormat.setMaxInputSplitSize(job, 10000);

测试后Map个数为1,由上面分片公式算出分片大小为301349250, 比 311349250小, 理论应该为两个map, 这是为什么呢?在上源码

while (bytesRemaining / splitSize > 1.1D) {
                        int blkIndex = getBlockIndex(blkLocations, length
                                - bytesRemaining);
                        splits.add(makeSplit(path, length - bytesRemaining,
                                splitSize, blkLocations[blkIndex].getHosts()));

                        bytesRemaining -= splitSize;
                    }

可以看出只要剩余的文件大小不超过分片大小的1.1倍, 则会分到一个分片中,避免开两个MAP, 其中一个运行数据太小,浪费资源。

总结,分片过程大概为,先遍历目标文件,过滤部分不符合要求的文件, 然后添加到列表,然后按照文件名来切分分片 (大小为前面计算分片大小的公式, 最后有个文件尾可能合并,其实常写网络程序的都知道), 然后添加到分片列表,然后每个分片读取自身对应的部分给MAP处理

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容