逻辑回归(Logistic regression)

参考1
参考2

0.前言

Logistic regression (逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性。之前在经典之作《数学之美》中也看到了它用于广告预测,也就是根据某广告被用户点击的可能性,把最可能被用户点击的广告摆在用户能看到的地方,然后叫他“你点我啊!”用户点了,你就有钱收了。这就是为什么我们的电脑现在广告泛滥的原因了。
还有类似的某用户购买某商品的可能性,某病人患有某种疾病的可能性啊等等。这个世界是随机的(当然了,人为的确定性系统除外,但也有可能有噪声或产生错误的结果,只是这个错误发生的可能性太小了,小到千万年不遇,小到忽略不计而已),所以万物的发生都可以用可能性或者几率(Odds)来表达。“几率”指的是某事物发生的可能性与不发生的可能性的比值。
Logistic regression可以用来回归,也可以用来分类,主要是二分类。如向量机SVM,它就是个二分类的,例如,它可以将两个不同类别的样本给分开,思想是找到最能区分它们的那个分类超平面。但当你给一个新的样本给它,它能够给你的只有一个答案,你这个样本是正类还是负类。例如你问SVM,某个女生是否喜欢你,它只会回答你喜欢或者不喜欢。这对我们来说,显得太粗鲁了,要不希望,要不绝望,这都不利于身心健康。那如果它可以告诉我,她很喜欢、有一点喜欢、不怎么喜欢或者一点都不喜欢,你想都不用想了等等,告诉你她有49%的几率喜欢你,总比直接说她不喜欢你,来得温柔。而且还提供了额外的信息,她来到你的身边你有多少希望,你得再努力多少倍,知己知彼百战百胜,哈哈。Logistic regression就是这么温柔的,它给我们提供的就是你的这个样本属于正类的可能性是多少。
假设我们的样本是{x, y},y是0或者1,表示正类或者负类,x是我们的m维的样本特征向量。那么这个样本x属于正类,也就是y=1的“概率”可以通过下面的逻辑函数来表示:


这里θ是模型参数,也就是回归系数,σ是sigmoid函数。实际上这个函数是由下面的对数几率(也就是x属于正类的可能性和负类的可能性的比值的对数)变换得到的:

换句话说,y也就是我们关系的变量,例如她喜不喜欢你,与多个自变量(因素)有关,例如你人品怎样、车子是两个轮的还是四个轮的、长得胜过潘安还是和犀利哥有得一拼、有千尺豪宅还是三寸茅庐等等,我们把这些因素表示为x1, x2,…, xm。那这个女的怎样考量这些因素呢?最快的方式就是把这些因素的得分都加起来,最后得到的和越大,就表示越喜欢。但每个人心里其实都有一杆称,每个人考虑的因素不同,萝卜青菜,各有所爱嘛。例如这个女生更看中你的人品,人品的权值是0.6,不看重你有没有钱,没钱了一起努力奋斗,那么有没有钱的权值是0.001等等。我们将这些对应x1, x2,…, xm的权值叫做回归系数,表达为θ1, θ2,…, θm。他们的加权和就是你的总得分了。请选择你的心仪男生,非诚勿扰!哈哈。
所以说上面的logistic回归就是一个线性分类模型,它与线性回归的不同点在于:为了将线性回归输出的很大范围的数,例如从负无穷到正无穷,压缩到0和1之间,这样的输出值表达为“可能性”才能说服广大民众。当然了,把大值压缩到这个范围还有个很好的好处,就是可以消除特别冒尖的变量的影响(不知道理解的是否正确)。而实现这个伟大的功能其实就只需要平凡一举,也就是在输出加一个logistic函数。另外,对于二分类来说,可以简单的认为:如果样本x属于正类的概率大于0.5,那么就判定它是正类,否则就是负类。实际上,SVM的类概率就是样本到边界的距离,这个活实际上就让logistic regression给干了。

所以说,LogisticRegression 就是一个被logistic方程归一化后的线性回归,仅此而已。
好了,关于LR的八卦就聊到这。归入到正统的机器学习框架下,模型选好了,只是模型的参数θ还是未知的,我们需要用我们收集到的数据来训练求解得到它。那我们下一步要做的事情就是建立代价函数了。
LogisticRegression最基本的学习算法是最大似然。
假设我们有n个独立的训练样本{(x1, y1) ,(x2, y2),…, (xn, yn)},y={0, 1}。那每一个观察到的样本(xi, yi)出现的概率是:

上面为什么是这样呢?当y=1的时候,后面那一项是不是没有了,那就只剩下x属于1类的概率,当y=0的时候,第一项是不是没有了,那就只剩下后面那个x属于0的概率(1减去x属于1的概率)。所以不管y是0还是1,上面得到的数,都是(x, y)出现的概率。那我们的整个样本集,也就是n个独立的样本出现的似然函数为(因为每个样本都是独立的,所以n个样本出现的概率就是他们各自出现的概率相乘):

那最大似然法就是求模型中使得似然函数最大的系数取值θ*。这个最大似然就是我们的代价函数(cost function)了。
OK,那代价函数有了,我们下一步要做的就是优化求解了。我们先尝试对上面的代价函数求导,看导数为0的时候可不可以解出来,也就是有没有解析解,有这个解的时候,就皆大欢喜了,一步到位。如果没有就需要通过迭代了,耗时耗力。
我们先变换下L(θ):取自然对数,然后化简(不要看到一堆公式就害怕哦,很简单的哦,只需要耐心一点点,自己动手推推就知道了。注:有xi的时候,表示它是第i个样本,下面没有做区分了,相信你的眼睛是雪亮的),得到:

这时候,用L(θ)对θ求导,得到:

然后我们令该导数为0,你会很失望的发现,它无法解析求解。不信你就去尝试一下。所以没办法了,只能借助高大上的迭代来搞定了。这里选用了经典的梯度下降算法。

1.what is the logistic regression?

许多人对线性回归都比较熟悉,但知道逻辑回归的人可能就要少的多。从大的类别上来说,逻辑回归是一种有监督的统计学习方法,主要用于对样本进行分类。

在线性回归模型中,输出一般是连续的,例如


对于每一个输入的x,都有一个对应的y输出。模型的定义域和值域都可以是[-∞, +∞]。但是对于逻辑回归,输入可以是连续的[-∞, +∞],但输出一般是离散的,即只有有限多个输出值。例如,其值域可以只有两个值{0, 1},这两个值可以表示对样本的某种分类,高/低、患病/健康、阴性/阳性等,这就是最常见的二分类逻辑回归。因此,从整体上来说,通过逻辑回归模型,我们将在整个实数范围上的x映射到了有限个点上,这样就实现了对x的分类。因为每次拿过来一个x,经过逻辑回归分析,就可以将它归入某一类y中。

逻辑回归与线性回归的关系

逻辑回归也被称为广义线性回归模型,它与线性回归模型的形式基本上相同,都具有 ax+b,其中a和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将ax+b作为因变量,即y = ax+b,而logistic回归则通过函数S将ax+b对应到一个隐状态p,p = S(ax+b),然后根据p与1-p的大小决定因变量的值。这里的函数S就是Sigmoid函数。


将t换成ax+b,可以得到逻辑回归模型的参数形式

sigmoid函数的图像

通过函数S的作用,我们可以将输出的值限制在区间[0, 1]上,p(x)则可以用来表示概率p(y=1|x),即当一个x发生时,y被分到1那一组的概率。可是,等等,我们上面说y只有两种取值,但是这里却出现了一个区间[0, 1],这是什么鬼??其实在真实情况下,我们最终得到的y的值是在[0, 1]这个区间上的一个数,然后我们可以选择一个阈值,通常是0.5,当y>0.5时,就将这个x归到1这一类,如果y<0.5就将x归到0这一类。但是阈值是可以调整的,比如说一个比较保守的人,可能将阈值设为0.9,也就是说有超过90%的把握,才相信这个x属于1这一类。了解一个算法,最好的办法就是自己从头实现一次。下面是逻辑回归的具体实现。

逻辑回归模型的代价函数

逻辑回归一般使用交叉熵作为代价函数。关于代价函数的具体细节,请参考代价函数
这里只给出交叉熵公式


m:训练样本的个数;

hθ(x):用参数θ和x预测出来的y值;

y:原训练样本中的y值,也就是标准答案

上角标(i):第i个样本

优化求解(以0.前言中最前面的最大似然函数举例)
梯度下降(gradient descent)

Gradient descent 又叫 steepest descent,是利用一阶的梯度信息找到函数局部最优解的一种方法,也是机器学习里面最简单最常用的一种优化方法。它的思想很简单,要找最小值,我只需要每一步都往下走(也就是每一步都可以让代价函数小一点),然后不断的走,那肯定能走到最小值的地方,例如下图所示



但,我同时也需要更快的到达最小值啊,怎么办呢?我们需要每一步都找下坡最快的地方,也就是每一步我走某个方向,都比走其他方法,要离最小值更近。而这个下坡最快的方向,就是梯度的负方向了。
对logistic Regression来说,梯度下降算法新鲜出炉,如下:


其中,参数α叫学习率,就是每一步走多远,这个参数非常关键的。如果设置的太多,那么很容易就在最优值附加徘徊,因为你步伐太大了。例如要从广州到上海,但是你的一步的距离就是广州到北京那么远,没有半步的说法,自己能迈那么大步,是幸运呢?还是不幸呢?事物总有两面性嘛,它带来的好处是能很快的从远离最优值的地方回到最优值附近,只是在最优值附近的时候,它有心无力了。但如果设置的太小,那收敛速度就太慢了,向蜗牛一样,虽然会落在最优的点,但是这速度如果是猴年马月,我们也没这耐心啊。所以有的改进就是在这个学习率这个地方下刀子的。我开始迭代是,学习率大,慢慢的接近最优值的时候,我的学习率变小就可以了。所谓采两者之精华啊!
梯度下降算法的伪代码如下:

初始化回归系数为1
重复下面步骤直到收敛{
        计算整个数据集的梯度
        使用alpha x gradient来更新回归系数
}
返回回归系数值
  注:因为本文中是求解的Logit回归的代价函数是似然函数,需要最大化似然函数。所以我们要用的是梯度上升算法。但因为其和梯度下降的原理是一样的,只是一个是找最大值,一个是找最小值。找最大值的方向就是梯度的方向,最小值的方向就是梯度的负方向。另外,最大似然可以通过取负对数,转化为求最小值。
随机梯度下降SGD (stochastic gradient descent)

梯度下降算法在每次更新回归系数的时候都需要遍历整个数据集(计算整个数据集的回归误差),该方法对小数据集尚可。但当遇到有数十亿样本和成千上万的特征时,就有点力不从心了,它的计算复杂度太高。改进的方法是一次仅用一个样本点(的回归误差)来更新回归系数。这个方法叫随机梯度下降算法。由于可以在新的样本到来的时候对分类器进行增量的更新(假设我们已经在数据库A上训练好一个分类器h了,那新来一个样本x。对非增量学习算法来说,我们需要把x和数据库A混在一起,组成新的数据库B,再重新训练新的分类器。但对增量学习算法,我们只需要用新样本x来更新已有分类器h的参数即可),所以它属于在线学习算法。与在线学习相对应,一次处理整个数据集的叫“批处理”。
随机梯度下降算法的伪代码如下:

初始化回归系数为1

重复下面步骤直到收敛{

        对数据集中每个样本

               计算该样本的梯度

                使用alpha xgradient来更新回归系数

 }

返回回归系数值
改进的随机梯度下降

评价一个优化算法的优劣主要是看它是否收敛,也就是说参数是否达到稳定值,是否还会不断的变化?收敛速度是否快?



上图展示了随机梯度下降算法在200次迭代中(请先看第三和第四节再回来看这里。我们的数据库有100个二维样本,每个样本都对系数调整一次,所以共有200*100=20000次调整)三个回归系数的变化过程。其中系数X2经过50次迭代就达到了稳定值。但系数X1和X0到100次迭代后稳定。而且可恨的是系数X1和X2还在很调皮的周期波动,迭代次数很大了,心还停不下来。产生这个现象的原因是存在一些无法正确分类的样本点,也就是我们的数据集并非线性可分,但我们的logistic regression是线性分类模型,对非线性可分情况无能为力。然而我们的优化程序并没能意识到这些不正常的样本点,还一视同仁的对待,调整系数去减少对这些样本的分类误差,从而导致了在每次迭代时引发系数的剧烈改变。对我们来说,我们期待算法能避免来回波动,从而快速稳定和收敛到某个值。
对随机梯度下降算法,我们做两处改进来避免上述的波动问题:
1)在每次迭代时,调整更新步长alpha的值。随着迭代的进行,alpha越来越小,这会缓解系数的高频波动(也就是每次迭代系数改变得太大,跳的跨度太大)。当然了,为了避免alpha随着迭代不断减小到接近于0(这时候,系数几乎没有调整,那么迭代也没有意义了),我们约束alpha一定大于一个稍微大点的常数项。
2)每次迭代,改变样本的优化顺序。也就是随机选择样本来更新回归系数。这样做可以减少周期性的波动,因为样本顺序的改变,使得每次迭代不再形成周期性。
改进的随机梯度下降算法的伪代码如下:

初始化回归系数为1
重复下面步骤直到收敛{

       对随机遍历的数据集中的每个样本

              随着迭代的逐渐进行,减小alpha的值

              计算该样本的梯度

              使用alpha x gradient来更新回归系数

    }

返回回归系数值

比较原始的随机梯度下降和改进后的梯度下降,可以看到两点不同:

1)系数不再出现周期性波动。2)系数可以很快的稳定下来,也就是快速收敛。这里只迭代了20次就收敛了。而上面的随机梯度下降需要迭代200次才能稳定。

2.数据实验演示

-0.017612   14.053064   0
-1.395634   4.662541    1
-0.752157   6.538620    0
-1.322371   7.152853    0
0.423363    11.054677   0
0.406704    7.067335    1
0.667394    12.741452   0
-2.460150   6.866805    1
0.569411    9.548755    0
-0.026632   10.427743   0

上面的数据一共是3列10行,其中前两列为x1和x2的值,第3列表示y的值;10行表示取了10个样本点。我们可以将这些数据当做训练模型参数的训练样本。

见到训练样本就可以比较直观的理解算法的输入,以及我们如何利用这些数据来训练逻辑回归分类器,进而用训练好的模型来预测新的样本(检测样本)。

从逻辑回归的参数形式,式子(1)我们可以看到逻辑回归模型中有两个待定参数a(x的系数)和b(常数项),我们现在给出来的数据有两个特征x1, x2,因此整个模型就增加了一项:ax1 + cx2 + b。为了形式上的统一,我们使用带下标的a表示不同的参数(a0表示常数项b并作x0的参数令 <x0=1>,a1、a2分别表示x1和x2的参数),就可以得到:


这样统一起来后,就可以使用矩阵表示了(比起前面展开的线性表示方式,用矩阵表示模型和参数更加简便,而且矩阵运算的速度也更快):

将上面的式子带入到(1)式,我们就可以得到逻辑回归的另一种表示形式了:

此时,可以很清楚的看到,我们后面的行动都是为了确定一个合适的a(一个参数向量),使得对于一个新来的X(也是一个向量),我们可以尽可能准确的给出一个y值,0或者1.

注:数据是二维的,也就是说这组观察样本中有两个自变量,即两个特征(feature)。

3.训练分类器

就像上面说的,训练分类器的过程,就是根据已经知道的数据(训练样本)确定一个使得代价函数的值最小的a(参数向量/回归系数)的过程。逻辑回归模型属于有监督的学习方法,上面示例数据中的第3列其实是训练样本提供的"标准答案"。也就是说,这些数据是已经分好类的(两类,0或者1)。在训练阶段,我们要做的就是利用训练样本和(2)式中的模型,估计一个比较合适的参数a,使得仅通过前面两列数据(观察值/测量值)就可以估计一个值h(a),这个值越接近标准答案y,说明我们的模型预测的越准确。

import numpy as np
import os
import matplotlib.pyplot as plt
path = 'D:/Python basic/logistic regression/data'
training_sample = 'Logistic_Regression-trainingSample.txt'
testing_sample = 'Logistic_Regression-testingSample.txt'

# 从文件中读入训练样本的数据
def loadDataSet(p, file_n):
    dataMat = []
    labelMat = []
    fr = open(os.path.join(p, file_n))
    for line in fr.readlines():# readlines() 方法用于读取所有行并返回列表list 该列表可以由 Python 的 for... in ... 结构进行处理
        lineArr = line.strip().split() #s.strip(rm) 删除s字符串中开头、结尾处
        # 三个特征x0, x1, x2, x0=1
        # print(lineArr[0])
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelMat.append(int(lineArr[2]))  # 样本标签y
    return dataMat, labelMat

def sigmoid(X):# sigmoid函数
    return 1.0/(1+np.exp(-X))

# 梯度下降法求回归系数a
def gradAscent(dataMatIn, classLabels):
    dataMatrix = np.mat(dataMatIn)             # 转换成numpy中的矩阵, X, 90 x 3
    labelMat = np.mat(classLabels).transpose()  # 转换成numpy中的矩阵, y, 90 x 1
    m, n = np.shape(dataMatrix)  # m=90, n=3
    alpha = 0.001  # 学习率
    maxCycles = 1000
    weights = np.ones((n, 1))  # 初始参数, 3 x 1
    for k in range(maxCycles):              # heavy on matrix operations
        h = sigmoid(np.dot(dataMatrix, weights))     # 模型预测值, 90 x 1, 矩阵乘法
        error = h - labelMat              # 真实值与预测值之间的误差, 90 x 1
        temp = np.dot(dataMatrix.transpose(), error)  # 所有参数的偏导数, 3 x 1, np.dot矩阵乘法
        weights = weights - alpha * temp  # 更新权重
    return weights

# 分类效果展示,参数weights就是回归系数
def plotBestFit(weights):
    dataMat,labelMat=loadDataSet(path, training_sample)
    dataArr = np.array(dataMat)
    n = np.shape(dataArr)[0]
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    for i in range(n):
        if int(labelMat[i])== 1:
            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    x = np.arange(-3.0, 3.0, 0.1)
    y = (-weights[0]-weights[1]*x)/weights[2]  # x2 = f(x1)
    ax.plot(x.reshape(1, -1), y.reshape(1, -1))
    plt.xlabel('X1'); plt.ylabel('X2');
    plt.show()
# 测试函数
def test_logistic_regression():
    dataArr, labelMat = loadDataSet(path, training_sample)  # 读入训练样本中的原始数据
    A = gradAscent(dataArr, labelMat)  # 回归系数a的值
    h = sigmoid(np.dot(dataArr, A)) # 预测结果h(a)的值, 矩阵乘法
    # print(dataArr, labelMat)
    print("回归系数:",A)
    print("预测值",h)
    plotBestFit(A)

test_logistic_regression()
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容