人工智能通识-科普-AUC和ROC

欢迎关注我的专栏( つ•̀ω•́)つ【人工智能通识】
【汇总】2019年4月专题


机器学习生成的结果是否足够好,AUC和ROC是重要指标。


T、F、P、N、R

首先我们先了解这四个概念:

  • T,True,真的。
  • F,False,假的。
  • P,Positive,阳性。
  • N,Negative,阴性。
  • R,Rate,比例,和上面四个没直接关系。

比如说看病这个事情:

  • 一个人得病了,但医生检查结果说他没病,那么他就是FN,假没病,也叫假阴性。
  • 一个人得病了,医生检查结果也说他有病,那么他就是TP,真有病,也叫真阳性。
  • 一个人没得病,医生检查结果却说他有病,那么他就是FP,假有病,也叫假阳性。
  • 一个人没得病,医生检查结果也说他没病,那么他就是TN,真没病,也叫真阴性。

FN、TP、FP、TN,可以理解第二个字母是医生说的,第一个字母是对医生说法的肯定(真没病真阴TN,真有病真阳TP)或否定(假有病假阳FP,假没病假阴FN)。

查出率TPR和查错率FPR

R是Rate比率,那么:

  • TPR,真阳率等于真阳数量除以真阳加假阴,就是真的有病并且医生判断也有病的病人数量除以全部真有病的人(真有病医生也说有病的真阳+真有病医生却说没病的假阴):

TPR=\frac{TP}{TP+FN}

  • FPR,假阳率等于假阳数量除以假阳加真阴,就是没病但医生说有病的病人数量除以全部实际没病的人(没病但医生说有病的+没病医生也说没病的):

FPR=\frac{FP}{FP+TN}

所以说,FPR真阳率是对有病的人的查出率,有病的人里面查出来多少个;而FPR则是对没病人员的误检率,没病的人里面误检了多少个。

  • ACC,Accuracy,精准度,有病被检查出来的TP是检测对了,没病也检测健康的TN也是检测对了,所有检测对的数量除以全部数量就是精准度:

ACC=\frac{TP+TN}{P+N}

案例计算

假如说我们编写了一个算法M,它能够根据一系列的属性(比如身高、爱好、衣着、饮食习惯等)来预测一个人的性别是男还是女。

然后我们有10个人属性组数据让算法M来预测,这10个人的真实性别和预测结果如下:


预测值中0代表女性,1代表男性,数字越大越接近男性特征,数字越小越接近女性特征。如果我们设定区分男女的阈值是0.5,那么预测值大于0.5的都是P正向男性,小于0.5都是N负向女性。

那么,真实6个男人中有[1,3,5,8,9]这5个都查出来了,算法M的查出率TPR=\frac{5}{6}=0.833;真实4个女性中6号被查错,所以误检率FPR=\frac{1}{4}=0.25;精度是ACC=\frac{5+3}{10}=0.8

但是注意,如果我们修改阈值等于4,那么就会变为6个男人全被检出,TPR=1,而女性则被误检2个FPR=0.5,精度仍然是0.8。

随机算法

假设我们有一个庸医,根本不懂医术,当病人来检查是否有病的时候,他就随机乱写有病或者没病,结果呢,对于所有真实有病的,庸医也能正确检查出一半,就是TPR=0.5,同样对于没病的也是一半被误检,就是FPR=0.5

这个庸医的“随机诊法”原理上总能得到相等的查出率和误检率,如果我们把FPR当做坐标横轴,TPR当做数轴,那么“随机诊法”对应了[0,0]到[1,1]的那条直线。

如图所示,越靠近左上角的情况查出率越高,查错率越低,[0,1]点是最完美的状态。而越靠近右下角,算法质量越低。

注意图中右下角C点,这里查错率高,查出率低,属于很糟糕的情况;但是如果我们把C点沿红色斜线对称上去成为C'点,那就很好了。——所以,如果你的算法预测结果总是差的要死,那么可以试试看把它颠倒一下,负负得正,也许就很好了。

ROC曲线

ROC(Receiver Operating Characteristic curve)接受者操作特征曲线。

上面我们都只是把从一组预测样本得到的[FPR,TPR]作为一个点描述,并且我们知道阈值的改变会严重影响FPR和TPR,那么,如果我们把所有可能的阈值都尝试一遍,再把样本集预测结果计算得到的所有[FPR,TPR]点都画在坐标上,就会得到一个曲线:

一般阈值范围是在0~1之间,1表示一个分类(男,或者有病),0表示另外一个分类(女,或者无病)。

在这个图中,注意:

  • 横竖都不是阈值坐标轴,这里没有显示阈值。
  • 蓝色线更加靠近左上角,比红色线更好。

ROC曲线上左侧的点好解释,误查率FPR越低,查出率TRP越高,自然是好的;但右上角的怎么解释?误查率和查出率都很高。——想象一下,有个庸医把阈值调的很高比如0.99,那么导致算法推测出来的都是男生,没有女生,这样的情况当然查出率很高(所有男生都查出来了),误查率也很高(所有女生都被当成男生了)。

AUC

ROC曲线的形状不太好量化比较,于是就有了AUC。

AUC,Area under the Curve of ROC (AUC ROC),就是ROC曲线下面的面积。如上图,蓝色曲线下面的面积更大,也就是它的AUC更大。

如图,左侧的红色折线覆盖了下面整个方形面积,AUC=1;中间的曲线向左上方凸起,AUC=0.8;右边的是完全随机的结果,占一半面积,AUC=0.5。

AUC面积越大,算法约好。

当我们写好算法之后,可以用一个样本集来让这个算法进行分类预测,然后我们绘制ROC曲线,观察AUC面积,计算ACC精度,用这些来对算法的好坏进行简单评估。


欢迎关注我的专栏( つ•̀ω•́)つ【人工智能通识】


每个人的智能新时代

如果您发现文章错误,请不吝留言指正;
如果您觉得有用,请点喜欢;
如果您觉得很有用,欢迎转载~


END

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,378评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,356评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,702评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,259评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,263评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,036评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,349评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,979评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,469评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,938评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,059评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,703评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,257评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,262评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,501评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,792评论 2 345

推荐阅读更多精彩内容