满足数据元素不同,但是在同一个线性表中的元素必定具有相同的特点,即属于同一数据对象, 相邻数据元素之间存在这个序偶关系. 诸如此类由(n>=0)个数据特性相同的元素构成的有限序列称为"线性表"。
对于⾮非空的线性表和线性结构,其特点如下
1.存在唯⼀一的⼀一个被称作”第⼀一个”的数据元素;
2.存在唯⼀一的⼀一个被称作”最后⼀一个"的数据元素
3.除了了第⼀一个之外,结构中的每个数据元素均有⼀一个前驱
4.除了了最后⼀一个之外,结构中的每个数据元素都有⼀一个后继.
线性表顺序存储实现
开启一段连续的空间,特点:逻辑相邻,物理存储地址相邻
代码示例:
声明一下宏定义,结构体
#define MAXSIZE 100
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
/* ElemType类型根据实际情况而定,这里假设为int */
typedef int ElemType;
/* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int Status;
/*线性结构使用顺序表的方式存储*/
//顺序表结构设计
typedef struct {
ElemType *data;
int length;
}Sqlist;
顺序表初始化
Status InitList(Sqlist *L){
//为顺序表分配一个大小为MAXSIZE 的数组空间
L->data = malloc(sizeof(ElemType) * MAXSIZE);
//存储分配失败退出
if(!L->data) exit(ERROR);
//空表长度为0
L->length = 0;
return OK;
}
顺序表的插入
/*
初始条件:顺序线性表L已存在,1≤i≤ListLength(L);
操作结果:在L中第i个位置之前插入新的数据元素e,L的长度加1
*/
Status ListInsert(Sqlist *L,int i,ElemType e){
//i值不合法判断
if((i<1) || (i>L->length+1)) return ERROR;
//存储空间已满
if(L->length == MAXSIZE) return ERROR;
//插入数据不在表尾,则先移动出空余位置
if(i <= L->length){
for(int j = L->length-1; j>=i-1;j--){
//插入位置以及之后的位置后移动1位
L->data[j+1] = L->data[j];
}
}
//将新元素e 放入第i个位置上
L->data[i-1] = e;
//长度+1;
++L->length;
return OK;
}
顺序表的取值
Status GetElem(Sqlist L,int i, ElemType *e){
//判断i值是否合理, 若不合理,返回ERROR
if(i<1 || i > L.length) return ERROR;
//data[i-1]单元存储第i个数据元素.
*e = L.data[i-1];
return OK;
}
顺序表删除
/*
初始条件:顺序线性表L已存在,1≤i≤ListLength(L)
操作结果: 删除L的第i个数据元素,L的长度减1
*/
Status ListDelete(Sqlist *L,int i){
//线性表为空
if(L->length == 0) return ERROR;
//i值不合法判断
if((i<1) || (i>L->length)) return ERROR;
for(int j = i; j < L->length;j++){
//被删除元素之后的元素向前移动
L->data[j-1] = L->data[j];
}
//表长度-1;
L->length --;
return OK;
}
清空顺序表
/* 初始条件:顺序线性表L已存在。操作结果:将L重置为空表 */
Status ClearList(Sqlist *L)
{
L->length=0;
return OK;
}
//1.6 判断顺序表清空
/* 初始条件:顺序线性表L已存在。操作结果:若L为空表,则返回TRUE,否则返回FALSE */
Status ListEmpty(Sqlist L)
{
if(L.length==0)
return TRUE;
else
return FALSE;
}
顺序输出List
/* 初始条件:顺序线性表L已存在 */
/* 操作结果:依次对L的每个数据元素输出 */
Status TraverseList(Sqlist L)
{
int I;
for(i=0;i<L.length;i++)
printf("%d\n",L.data[I]);
printf("\n");
return OK;
}
线性表的链式存储
最大的特点是不连续的,每个数据与数据的关系是通过指针域来联系的
单链表的逻辑状态
第一个结点是首元结点,最后一个结点的指针域为空
增加头结点的单链表逻辑状态
增加头结点的好处
- 便于首元结点处理
-
便于空表和⾮空表的统⼀处理,更加方便的处理单链表的插入和删除操作,不加头结点需要改L,需要if判断
代码示例:
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define OK 1
#define MAXSIZE 20 /* 存储空间初始分配量 */
typedef int Status;/* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int ElemType;/* ElemType类型根据实际情况而定,这里假设为int */
//定义结点
typedef struct Node{
ElemType data;
struct Node *next;
}Node;
typedef struct Node * LinkList;
初始化单链表线性表
//2.1 初始化单链表线性表
Status InitList(LinkList *L){
//产生头结点,并使用L指向此头结点
*L = (LinkList)malloc(sizeof(Node));
//存储空间分配失败
if(*L == NULL) return ERROR;
//将头结点的指针域置空
(*L)->next = NULL;
return OK;
}
单链表插入
/*
初始条件:顺序线性表L已存在,1≤i≤ListLength(L);
操作结果:在L中第i个位置之后插入新的数据元素e,L的长度加1;
*/
Status ListInsert(LinkList *L,int i,ElemType e){
int j;
LinkList p,s;
p = *L;
j = 1;
//寻找第i-1个结点
while (p && j<i) {
p = p->next;
++j;
}
//第i个元素不存在
if(!p || j>i) return ERROR;
//生成新结点s
s = (LinkList)malloc(sizeof(Node));
//将e赋值给s的数值域
s->data = e;
//将p的后继结点赋值给s的后继
s->next = p->next;
//将s赋值给p的后继
p->next = s;
return OK;
}
单链表取值
/*
初始条件: 顺序线性表L已存在,1≤i≤ListLength(L);
操作结果:用e返回L中第i个数据元素的值
*/
Status GetElem(LinkList L,int i,ElemType *e){
//j: 计数.
int j;
//声明结点p;
LinkList p;
//将结点p 指向链表L的第一个结点;
p = L->next;
//j计算=1;
j = 1;
//p不为空,且计算j不等于i,则循环继续
while (p && j<i) {
//p指向下一个结点
p = p->next;
++j;
}
//如果p为空或者j>i,则返回error
if(!p || j > i) return ERROR;
//e = p所指的结点的data
*e = p->data;
return OK;
}
单链表删除元素
/*
初始条件:顺序线性表L已存在,1≤i≤ListLength(L)
操作结果:删除L的第i个数据元素,并用e返回其值,L的长度减1
*/
Status ListDelete(LinkList *L,int i,ElemType *e){
int j;
LinkList p,q;
p = (*L)->next;
j = 1;
//查找第i-1个结点,p指向该结点
while (p->next && j<(i-1)) {
p = p->next;
++j;
}
//当i>n 或者 i<1 时,删除位置不合理
if (!(p->next) || (j>i-1)) return ERROR;
//q指向要删除的结点
q = p->next;
//将q的后继赋值给p的后继
p->next = q->next;
//将q结点中的数据给e
*e = q->data;
//让系统回收此结点,释放内存;
free(q);
return OK;
}
依次对L的每个数据元素输出
/* 初始条件:顺序线性表L已存在 */
/* 操作结果:依次对L的每个数据元素输出 */
Status ListTraverse(LinkList L)
{
LinkList p=L->next;
while(p)
{
printf("%d\n",p->data);
p=p->next;
}
printf("\n");
return OK;
}
将L重置为空表
/* 初始条件:顺序线性表L已存在。操作结果:将L重置为空表 */
Status ClearList(LinkList *L)
{
LinkList p,q;
p=(*L)->next; /* p指向第一个结点 */
while(p) /* 没到表尾 */
{
q=p->next;
free(p);
p=q;
}
(*L)->next=NULL; /* 头结点指针域为空 */
return OK;
}
单链表前插入法
每次循环 都让头结点next指向新创建的结点
新创建的结点的next指向 头结点的next
//3.1 单链表前插入法
/* 随机产生n个元素值,建立带表头结点的单链线性表L(前插法)*/
void CreateListHead(LinkList *L, int n){
LinkList p;
//建立1个带头结点的单链表
*L = (LinkList)malloc(sizeof(Node));
(*L)->next = NULL;
//循环前插入随机数据
for(int i = 0; i < n;i++)
{
//生成新结点
p = (LinkList)malloc(sizeof(Node));
//i赋值给新结点的data
p->data = I;
//p->next = 头结点的L->next
p->next = (*L)->next;
//将结点P插入到头结点之后;
(*L)->next = p;
}
}
单链表后插入法
当新的结点过,位置在next指针新的结点,然后把新的结点让指针r指向.最后循环走完,r->next==NULL
//3.2 单链表后插入法
/* 随机产生n个元素值,建立带表头结点的单链线性表L(后插法)*/
void CreateListTail(LinkList *L, int n){
LinkList p,r;
//建立1个带头结点的单链表
*L = (LinkList)malloc(sizeof(Node));
//r指向尾部的结点
r = *L;
for (int i=0; i<n; i++) {
//生成新结点
p = (Node *)malloc(sizeof(Node));
p->data = I;
//将表尾终端结点的指针指向新结点
r->next = p;
//将当前的新结点定义为表尾终端结点
r = p;
}
//将尾指针的next = null
r->next = NULL;
}