图像上采样和降采样

1 、概念

image.png

高斯金子塔 – 用来对图像进行降采样
拉普拉斯金字塔 – 用来重建一张图片根据它的上层降采样图片

2 、高斯金字塔

高斯金子塔是从底向上,逐层降采样得到。
降采样之后图像大小是原图像MxN的M/2 x N/2 ,就是对原图像删除偶数行与列,即得到降采样之后上一层的图片。
高斯金子塔的生成过程分为两步:
- 对当前层进行高斯模糊
- 删除当前层的偶数行与列
即可得到上一层的图像,这样上一层跟下一层相比,都只有它的1/4大小

3 、高斯不同

定义:就是把同一张图像在不同的参数下做高斯模糊之后的结果相减,得到的输出图像。称为高斯不同(DOG)
高斯不同是图像的内在特征,在灰度图像增强、角点检测中经常用到。

4 、整体代码测试

CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst,
                         const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst,
                           const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
这个参数指的是降采样之后的目标图像的大小,我们可以看出它是有默认值的,如果我们调用函数的时候不指定第三个参数,那么这个值是按照 Size((src.cols+1)/2, (src.rows+1)/2) 计算的。而且不管你自己如何指定这个参数,一定必须保证满足以下关系式:

|dstsize.width * 2 - src.cols| ≤ 2;

|dstsize.height * 2 - src.rows| ≤ 2;

也就是说降采样的意思其实是把图像的尺寸缩减一半,行和列同时缩减一半。所以你指定的大小,无非就是多一行少一列的区别而已。在大多数情况下使用默认值就可了,因为这个函数不是缩减图像至任意尺寸,就只是缩减一半,所以没必要搞得那么复杂。
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace cv;
#include <opencv2/core/core.hpp> 
#include <opencv2/imgcodecs.hpp> 
#include <opencv2/highgui/highgui.hpp>
#include <iostream>

using namespace cv;
using namespace std;


int main(int argc, char** argv) {

    Mat src, dst,dst1,dst3, dst4;

    src = imread("D:\\f.jpg");

    if (!src.data) {
        printf("could not load image...\n");
        return -1;
    }

    namedWindow("could", CV_WINDOW_AUTOSIZE);
    imshow("could", src);


    // 上采样
    pyrUp(src, dst, Size(src.cols * 2, src.rows * 2));
    imshow("11", dst);

    // 降采样
    Mat s_down;
    pyrDown(src, s_down, Size(src.cols / 2, src.rows / 2));
    imshow("sample down", s_down);


    
    waitKey();
    return 0;
}
降采样

上采样
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容