深入Dubbo 源码解析 — 负载均衡LoadBalance

技术点

面试中Dubbo负载均衡常问的几点

常见负载均衡算法简介

Dubbo 官方文档介绍

Dubbo 负载均衡的策略

Dubbo 负载均衡源码解析

面试中Dubbo负载均衡常问的几点

负载均衡算法

最小活跃数

一致性哈希算法

常见负载均衡算法简介

首先引出一点 负载均衡的目的是什么?

当一台服务器的承受能力达到上限时,那么就需要多台服务器来组成集群,提升应用整体的吞吐量,那么这个时候就涉及到如何合理分配客户端请求到集群中不同的机器,这个过程就叫做负载均衡

下面简单介绍几种负载均衡算法,有利于理解源码中为什么这样设计

权重随机算法

策略就是根据权重占比随机。算法很简单,就是一根数轴。然后利用伪随机数产生点,*看点落在了哪个区域从而选择对应的服务器*

权重轮询算法

轮询算法是指依次访问可用服务器列表,其和随机本质是一样的处理,在无权重因素下,轮询只是在选数轴上的点时采取自增对长度取余方式。有权重因素下依然自增取余,再看选取的点落在了哪个区域。

一致性Hash负载均衡算法

利用Hash算法定位相同的服务器

普通的Hash:当客户端请求到达是则使用 hash(client) % N,其中N是服务器数量,利用这个表达式计算出该客户端对应的Server处理

一致性Hash:一致性Hash是把服务器分布变成一个环形,每一个hash(clinet)的结果会在该环上顺时针寻找第一个与其邻的Server节点

一致性Hash算法

—————————— 下面这部分是来源于dubbo 官方文档 ————————————

Dubbo 官方文档介绍

负载均衡

在集群负载均衡时,Dubbo 提供了多种均衡策略,缺省为 Random LoadBalance 随机调用

负载均衡策略

Random LoadBalance

随机,按权重设置随机概率。

在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀,有利于动态调整提供者权重。

RoundRobin LoadBalance

轮询,按公约后的权重设置轮询比率。

存在慢的提供者累积请求的问题,比如:第二台机器很慢,但没挂,当请求调到第二台时就卡在那,久而久之,所有请求都卡在调到第二台上。

LeastActive LoadBalance

最少活跃调用数,相同活跃数的随机,活跃数指调用前后计数差。

使慢的提供者收到更少请求,因为越慢的提供者的调用前后计数差会越大。

ConsistentHash LoadBalance

一致性 Hash,相同参数的请求总是发到同一提供者。

当某一台提供者挂时,原本发往该提供者的请求,基于虚拟节点,平摊到其它提供者,不会引起剧烈变动。

算法参见:http://en.wikipedia.org/wiki/Consistent_hashing

缺省只对第一个参数 Hash,如果要修改,请配置<dubbo:parameter key="hash.arguments" value="0,1" />

缺省用 160 份虚拟节点,如果要修改,请配置<dubbo:parameter key="hash.nodes" value="320" />

配置

服务端服务级别

<dubbo:service interface="..." loadbalance="roundrobin" />

客户端服务级别

<dubbo:reference interface="..." loadbalance="roundrobin" />

服务端方法级别

<dubbo:service interface="...">

    <dubbo:method name="..." loadbalance="roundrobin"/>

</dubbo:service>

客户端方法级别

<dubbo:reference interface="...">

    <dubbo:method name="..." loadbalance="roundrobin"/>

</dubbo:reference>

———————————————— Dubbo 官方文档已结束 ——————————————

Dubbo 负载均衡的策略

上面官网文档已经说明 Dubbo 的负载均衡算法总共有4种

随机算法RandomLoadBalance(默认)

轮训算法RoundRobinLoadBalance

最小活跃数算法LeastActiveLoadBalance

一致性hash算法ConsistentHashLoadBalance

我们先看下接口的继承图

LoadBalance

首先查看 LoadBalance 接口

Invoker select(List invokers, URL url, Invocation invocation) throws RpcException;

LoadBalance定义了一个方法就是从 invokers 列表中选取一个

AbstractLoadBalance

AbstractLoadBalance抽象类是所有负载均衡策略实现类的父类,实现了LoadBalance接口 的方法,同时提供抽象方法交由子类实现,

public <T> Invoker<T> select(List<Invoker<T>> invokers, URL url, Invocation invocation) {

        if (invokers == null || invokers.size() == 0)

            return null;

        if (invokers.size() == 1)

            return invokers.get(0);

        return doSelect(invokers, url, invocation);

    }

    protected abstract <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation);

下面对四种均衡策略依次解析

RandomLoadBalance(随机)

随机,按权重设置随机概率。

在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀,有利于动态调整提供者权重。

RandomLoadBalance#doSelect()

@Override

protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {

    //先获得invoker 集合大小

    int length = invokers.size(); // Number of invokers

    //总权重

    int totalWeight = 0; // The sum of weights

    //每个invoker是否有相同的权重

    boolean sameWeight = true; // Every invoker has the same weight?

    // 计算总权重

    for (int i = 0; i < length; i++) {

        //获得单个invoker 的权重

        int weight = getWeight(invokers.get(i), invocation);

        //累加

        totalWeight += weight; // Sum

        if (sameWeight && i > 0 && weight != getWeight(invokers.get(i - 1), invocation)) {

            sameWeight = false;

        }

    }

    // 权重不相等,随机后,判断在哪个 Invoker 的权重区间中

    if (totalWeight > 0 && !sameWeight) {

        // 随机

        // If (not every invoker has the same weight & at least one invoker's weight>0), select randomly based on totalWeight.

        int offset = ThreadLocalRandom.current().nextInt(totalWeight);

        // 区间判断

        // Return a invoker based on the random value.

        for (int i = 0; i < length; i++) {

            offset -= getWeight(invokers.get(i), invocation);

            if (offset < 0) {

                return invokers.get(i);

            }

        }

    }

    // 权重相等,平均随机

    // If all invokers have the same weight value or totalWeight=0, return evenly.

    return invokers.get(ThreadLocalRandom.current().nextInt(length));

}

算法分析

假定有3台dubbo provider: 10.0.0.1:20884, weight=2 10.0.0.1:20886, weight=3 10.0.0.1:20888, weight=4 随机算法的实现: totalWeight=9; 假设offset=1(即random.nextInt(9)=1) 1-2=-1<0?是,所以选中 10.0.0.1:20884, weight=2

假设offset=4(即random.nextInt(9)=4) 4-2=2<0?否,这时候offset=2, 2-3<0?是,所以选中 10.0.0.1:20886, weight=3

假设offset=7(即random.nextInt(9)=7) 7-2=5<0?否,这时候offset=5, 5-3=2<0?否,这时候offset=2, 2-4<0?是,所以选中 10.0.0.1:20888, weight=4

流程图

RoundRobinLoadBalance#doSelect()(轮询)

轮询,按公约后的权重设置轮询比率。

存在慢的提供者累积请求的问题,比如:第二台机器很慢,但没挂,当请求调到第二台时就卡在那,久而久之,所有请求都卡在调到第二台上。

protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {

    String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();

    int length = invokers.size(); // Number of invokers

    int maxWeight = 0; // The maximum weight

    int minWeight = Integer.MAX_VALUE; // The minimum weight

    final LinkedHashMap<Invoker<T>, IntegerWrapper> invokerToWeightMap = new LinkedHashMap<Invoker<T>, IntegerWrapper>();

    int weightSum = 0;

    // 计算最小、最大权重,总的权重和。

    for (int i = 0; i < length; i++) {

        int weight = getWeight(invokers.get(i), invocation);

        maxWeight = Math.max(maxWeight, weight); // Choose the maximum weight

        minWeight = Math.min(minWeight, weight); // Choose the minimum weight

        if (weight > 0) {

            invokerToWeightMap.put(invokers.get(i), new IntegerWrapper(weight));

            weightSum += weight;

        }

    }

    // 计算最小、最大权重,总的权重和。

    AtomicPositiveInteger sequence = sequences.get(key);

    if (sequence == null) {

        sequences.putIfAbsent(key, new AtomicPositiveInteger());

        sequence = sequences.get(key);

    }

    // 获得当前顺序号,并递增 + 1

    int currentSequence = sequence.getAndIncrement();

    // 权重不相等,顺序根据权重分配

    if (maxWeight > 0 && minWeight < maxWeight) {

        int mod = currentSequence % weightSum;// 剩余权重

        for (int i = 0; i < maxWeight; i++) {// 循环最大权重

            for (Map.Entry<Invoker<T>, IntegerWrapper> each : invokerToWeightMap.entrySet()) {

                final Invoker<T> k = each.getKey();

                final IntegerWrapper v = each.getValue();

                // 剩余权重归 0 ,当前 Invoker 还有剩余权重,返回该 Invoker 对象

                if (mod == 0 && v.getValue() > 0) {

                    return k;

                }

                // 若 Invoker 还有权重值,扣除它( value )和剩余权重( mod )。

                if (v.getValue() > 0) {

                    v.decrement();

                    mod--;

                }

            }

        }

    }

    // 权重相等,平均顺序获得

    // Round robin

    return invokers.get(currentSequence % length);

}

算法说明

假定有3台权重都一样的dubbo provider: 10.0.0.1:20884, weight=100 10.0.0.1:20886, weight=100 10.0.0.1:20888, weight=100 轮询算法的实现: 其调用方法某个方法(key)的sequence从0开始: sequence=0时,选择invokers.get(0%3)=10.0.0.1:20884 sequence=1时,选择invokers.get(1%3)=10.0.0.1:20886 sequence=2时,选择invokers.get(2%3)=10.0.0.1:20888 sequence=3时,选择invokers.get(3%3)=10.0.0.1:20884 sequence=4时,选择invokers.get(4%3)=10.0.0.1:20886 sequence=5时,选择invokers.get(5%3)=10.0.0.1:20888

LeastActiveLoadBalance(最少活跃数)

最少活跃调用数,相同活跃数的随机,活跃数指调用前后计数差。

使慢的提供者收到更少请求,因为越慢的提供者的调用前后计数差会越大。

protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {

    // 总个数

    int length = invokers.size(); // Number of invokers

    // 最少的活跃数

    int leastActive = -1; // The least active value of all invokers

    // 相同最小活跃数的个数

    int leastCount = 0; // The number of invokers having the same least active value (leastActive)

    // 相同最小活跃数的下标

    int[] leastIndexs = new int[length]; // The index of invokers having the same least active value (leastActive)

    //总权重

    int totalWeight = 0; // The sum of weights

    // 第一个权重,用于于计算是否相同

    int firstWeight = 0; // Initial value, used for comparision

    // 是否所有权重相同

    boolean sameWeight = true; // Every invoker has the same weight value?

    // 计算获得相同最小活跃数的数组和个数

    for (int i = 0; i < length; i++) {

        Invoker<T> invoker = invokers.get(i);

        // 活跃数

        int active = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName()).getActive(); // Active number

        // 权重

        int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT); // Weight

        // 发现更小的活跃数,重新开始

        if (leastActive == -1 || active < leastActive) { // Restart, when find a invoker having smaller least active value.

            // 记录最小活跃数

            leastActive = active; // Record the current least active value

            // 重新统计相同最小活跃数的个数

            leastCount = 1; // Reset leastCount, count again based on current leastCount

            // 重新记录最小活跃数下标

            leastIndexs[0] = i; // Reset

            // 重新统计总权重

            totalWeight = weight; // Reset

            // 记录第一个权重

            firstWeight = weight; // Record the weight the first invoker

            // 还原权重标识

            sameWeight = true; // Reset, every invoker has the same weight value?

        // 累计相同最小的活跃数

        } else if (active == leastActive) { // If current invoker's active value equals with leaseActive, then accumulating.

            // 累计相同最小活跃数下标

            leastIndexs[leastCount++] = i; // Record index number of this invoker

            // 累计总权重

            totalWeight += weight; // Add this invoker's weight to totalWeight.

            // 判断所有权重是否一样

            // If every invoker has the same weight?

            if (sameWeight && i > 0

                    && weight != firstWeight) {

                sameWeight = false;

            }

        }

    }

    // assert(leastCount > 0)

    if (leastCount == 1) {

        // 如果只有一个最小则直接返回

        // If we got exactly one invoker having the least active value, return this invoker directly.

        return invokers.get(leastIndexs[0]);

    }

    if (!sameWeight && totalWeight > 0) {

        // 如果权重不相同且权重大于0则按总权重数随机

        // If (not every invoker has the same weight & at least one invoker's weight>0), select randomly based on totalWeight.

        int offsetWeight = ThreadLocalRandom.current().nextInt(totalWeight);

        // 并确定随机值落在哪个片断上

        // Return a invoker based on the random value.

        for (int i = 0; i < leastCount; i++) {

            int leastIndex = leastIndexs[i];

            offsetWeight -= getWeight(invokers.get(leastIndex), invocation);

            if (offsetWeight <= 0)

                return invokers.get(leastIndex);

        }

    }

    // 如果权重相同或权重为0则均等随机

    // If all invokers have the same weight value or totalWeight=0, return evenly.

    return invokers.get(leastIndexs[ThreadLocalRandom.current().nextInt(leastCount)]);

}

简单思路介绍

概括起来就两部分,一部分是活跃数和权重的统计,另一部分是选择invoker.也就是他把最小活跃数的invoker统计到leastIndexs数组中,如果权重一致(这个一致的规则参考上面的随机算法)或者总权重为0,则均等随机调用,如果不同,则从leastIndexs数组中按照权重比例调用

算法说明

最小活跃数算法实现: 假定有3台dubbo provider: 10.0.0.1:20884, weight=2,active=2 10.0.0.1:20886, weight=3,active=4 10.0.0.1:20888, weight=4,active=3 active=2最小,且只有一个2,所以选择10.0.0.1:20884

假定有3台dubbo provider: 10.0.0.1:20884, weight=2,active=2 10.0.0.1:20886, weight=3,active=2 10.0.0.1:20888, weight=4,active=3 active=2最小,且有2个,所以从[10.0.0.1:20884,10.0.0.1:20886 ]中选择; 接下来的算法与随机算法类似: 假设offset=1(即random.nextInt(5)=1) 1-2=-1<0?是,所以选中 10.0.0.1:20884, weight=2 假设offset=4(即random.nextInt(5)=4) 4-2=2<0?否,这时候offset=2, 2-3<0?是,所以选中 10.0.0.1:20886, weight=3

流程图

ConsistentHashLoadBalance(一致性哈希)

一致性 Hash,相同参数的请求总是发到同一提供者。

当某一台提供者挂时,原本发往该提供者的请求,基于虚拟节点,平摊到其它提供者,不会引起剧烈变动。

源码其实分为四个步骤

定义全局一致性hash选择器的ConcurrentMap<String, ConsistentHashSelector<?>> selectors,key为方法名称,例如com.alibaba.dubbo.demo.TestService.getRandomNumber

如果一致性hash选择器不存在或者与以前保存的一致性hash选择器不一样(即dubbo服务provider有变化,通过System.identityHashCode(invokers)计算一个identityHashCode值) 则需要重新构造一个一致性hash选择器

构造一个一致性hash选择器ConsistentHashSelector的源码如下,通过参数i和h打散Invoker在TreeMap上的位置,replicaNumber默认值为160,所以最终virtualInvokers这个TreeMap的size为invokers.size()*replicaNumber

选择Invoker的步骤

根据Invocation中的参数invocation.getArguments()转成key

算出这个key的md5值

根据md5值的hash值从TreeMap中选择一个Invoker

下面源码解析+注释在此我向大家推荐一个架构学习交流裙。交流学习裙号:821169538,里面会分享一些资深架构师录制的视频录像

public class ConsistentHashLoadBalance extends AbstractLoadBalance {

    public static final String NAME = "consistenthash";

    /**

    * 服务方法与一致性哈希选择器的映射

    *

    * KEY:serviceKey + "." + methodName

    */

    private final ConcurrentMap<String, ConsistentHashSelector<?>> selectors = new ConcurrentHashMap<String, ConsistentHashSelector<?>>();

    @SuppressWarnings("unchecked")

    @Override

    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {

        String methodName = RpcUtils.getMethodName(invocation);

        // 基于 invokers 集合,根据对象内存地址来计算定义哈希值

        String key = invokers.get(0).getUrl().getServiceKey() + "." + methodName;

        int identityHashCode = System.identityHashCode(invokers);

        // 获得 ConsistentHashSelector 对象。若为空,或者定义哈希值变更(说明 invokers 集合发生变化),

        // 进行创建新的 ConsistentHashSelector 对象

        ConsistentHashSelector<T> selector = (ConsistentHashSelector<T>) selectors.get(key);

        if (selector == null || selector.identityHashCode != identityHashCode) {

            selectors.put(key, new ConsistentHashSelector<T>(invokers, methodName, identityHashCode));

            selector = (ConsistentHashSelector<T>) selectors.get(key);

        }

        return selector.select(invocation);

    }

    private static final class ConsistentHashSelector<T> {

        /**

        * 虚拟节点与 Invoker 的映射关系

        */

        private final TreeMap<Long, Invoker<T>> virtualInvokers;

        /**

        * 每个Invoker 对应的虚拟节点数

        */

        private final int replicaNumber;

        /**

        * 定义哈希值

        */

        private final int identityHashCode;

        /**

        * 取值参数位置数组

        */

        private final int[] argumentIndex;

        ConsistentHashSelector(List<Invoker<T>> invokers, String methodName, int identityHashCode) {

            this.virtualInvokers = new TreeMap<Long, Invoker<T>>();

            // 设置 identityHashCode

            this.identityHashCode = identityHashCode;

            URL url = invokers.get(0).getUrl();

            // 初始化 replicaNumber

            this.replicaNumber = url.getMethodParameter(methodName, "hash.nodes", 160);

            // 初始化 argumentIndex

            String[] index = Constants.COMMA_SPLIT_PATTERN.split(url.getMethodParameter(methodName, "hash.arguments", "0"));

            argumentIndex = new int[index.length];

            for (int i = 0; i < index.length; i++) {

                argumentIndex[i] = Integer.parseInt(index[i]);

            }

            // 初始化 virtualInvokers

            for (Invoker<T> invoker : invokers) {

                String address = invoker.getUrl().getAddress();

                // 每四个虚拟结点为一组,为什么这样?下面会说到

                for (int i = 0; i < replicaNumber / 4; i++) {

                    // 这组虚拟结点得到惟一名称

                    byte[] digest = md5(address + i);

                    // Md5是一个16字节长度的数组,将16字节的数组每四个字节一组,

                    // 分别对应一个虚拟结点,这就是为什么上面把虚拟结点四个划分一组的原因

                    for (int h = 0; h < 4; h++) {

                        // 对于每四个字节,组成一个long值数值,做为这个虚拟节点的在环中的惟一key

                        long m = hash(digest, h);

                        virtualInvokers.put(m, invoker);

                    }

                }

            }

        }

        public Invoker<T> select(Invocation invocation) {

            // 基于方法参数,获得 KEY

            String key = toKey(invocation.getArguments());

            // 计算 MD5 值

            byte[] digest = md5(key);

            // 计算 KEY 值

            return selectForKey(hash(digest, 0));

        }

        /**

        * 基于方法参数,获得 KEY

        * @param args

        * @return

        */

        private String toKey(Object[] args) {

            StringBuilder buf = new StringBuilder();

            for (int i : argumentIndex) {

                if (i >= 0 && i < args.length) {

                    buf.append(args[i]);

                }

            }

            return buf.toString();

        }

        /**

        * 选一个 Invoker 对象

        * @param hash

        * @return

        */

        private Invoker<T> selectForKey(long hash) {

            // 得到大于当前 key 的那个子 Map ,然后从中取出第一个 key ,就是大于且离它最近的那个 key

            Map.Entry<Long, Invoker<T>> entry = virtualInvokers.ceilingEntry(hash);

            // 不存在,则取 virtualInvokers 第一个

            if (entry == null) {

                entry = virtualInvokers.firstEntry();

            }

            // 存在,则返回

            return entry.getValue();

        }

        /**

        * 对于每四个字节,组成一个 Long 值数值,做为这个虚拟节点的在环中的惟一 KEY

        * @param digest

        * @param number

        * @return

        */

        private long hash(byte[] digest, int number) {

            return (((long) (digest[3 + number * 4] & 0xFF) << 24)

                    | ((long) (digest[2 + number * 4] & 0xFF) << 16)

                    | ((long) (digest[1 + number * 4] & 0xFF) << 8)

                    | (digest[number * 4] & 0xFF))

                    & 0xFFFFFFFFL;

        }

        /**

        * MD5 是一个 16 字节长度的数组,将 16 字节的数组每四个字节一组,

        * 分别对应一个虚拟结点,这就是为什么上面把虚拟结点四个划分一组的原因

        * @param value

        * @return

        */

        private byte[] md5(String value) {

            MessageDigest md5;

            try {

                md5 = MessageDigest.getInstance("MD5");

            } catch (NoSuchAlgorithmException e) {

                throw new IllegalStateException(e.getMessage(), e);

            }

            md5.reset();

            byte[] bytes;

            try {

                bytes = value.getBytes("UTF-8");

            } catch (UnsupportedEncodingException e) {

                throw new IllegalStateException(e.getMessage(), e);

            }

            md5.update(bytes);

            return md5.digest();

        }

    }

}

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容

  • LoadBalance 从LoadBalance的实现类可知,dubbo默认的负载均衡算法总计有4种: 随机算法R...
    阿飞的博客阅读 2,006评论 2 7
  • 先看官网一张图image.png这就是dubbo的集群设计了,本章主要解析的就是图中的主要几个蓝色点,简单堆土做个...
    致虑阅读 383评论 0 1
  • 前言 本文继续分析dubbo的cluster层,此层封装多个提供者的路由及负载均衡,并桥接注册中心,以Invoke...
    Java大生阅读 983评论 0 0
  • 君住长江头,我住长江尾,日日思君不见君,共饮长江水。 异地恋最难的是什么? 是我很难过,一个人落泪,你却忙得昏天暗...
    樂鈫阅读 398评论 0 0
  • 退休老教师给孩子们讲述学校的艰苦历程。 干净整洁的办公室 舞蹈排练 认真学习 舞台上的孩子们 快放学了,贴颗美人痣...
    d532cff90a2a阅读 451评论 0 2