递归思想
递归指的是一个过程:函数不断引用自身,直到引用的对象已知。递归就是在函数内部调用自己的函数被称之为递归。
周末你带着女朋友去电影院看电影,女朋友问你,咱们现在坐在第几排啊?电影院里面太黑了,看不清,没法数,现在你怎么办?
递归思想:你就问前面一排的人他是第几排,你想只要在他的数字上加一,就知道自己在哪一排了。但是,前面的人也看不清啊,所以他也问他前面的人。就这样一排一排往前问,直到问到第一排的人,说我在第一排,然后再这样一排一排再把数字传回来。直到你前面的人告诉你他在哪一排,于是你就知道答案了。
这就是一个非常标准的递归求解问题的分解过程,去的过程叫“递”,回来的过程叫“归”。基本上,所有的递归问题都可以用递推公式来表示。
刚刚这个例子,我们用递推公式将它表示出来就是这样的:
f(n) = f(n-1) + 1其中,f(1) = 1
f(n) 表示你想知道自己在哪一排,f(n-1) 表示前面一排所在的排数,f(1)=1 表示第一排的人知道自己在第一排。
递归的三个条件
刚刚这个例子是非常典型的递归,那究竟什么样的问题可以用递归来解决呢?我总结了三个条件,只要同时满足以下三个条件,就可以用递归来解决。
- 一个问题的解可以分解为几个子问题的解
何为子问题?子问题就是数据规模更小的问题。比如,前面讲的电影院的例子,你要知道,“自己在哪一排”的问题,可以分解为“前一排的人在哪一排”这样一个子问题。 - 这个问题与分解之后的子问题,除了数据规模不同,求解思路完全一样
比如电影院那个例子,你求解“自己在哪一排”的思路,和前面一排人求解“自己在哪一排”的思路,是一模一样的。 - 存在递归终止条件
把问题分解为子问题,把子问题再分解为子子问题,一层一层分解下去,不能存在无限循环,这就需要有终止条件。
还是电影院的例子,第一排的人不需要再继续询问任何人,就知道自己在哪一排,也就是 f(1)=1,这就是递归的终止条件。
编写递归案例
假如这里有 n 个台阶,每次你可以跨 1 个台阶或者 2 个台阶,请问走这 n 个台阶有多少种走法?如果有 7 个台阶,你可以 2,2,2,1 这样子上去,也可以 1,2,1,1,2 这样子上去,总之走法有很多,那如何用编程求得总共有多少种走法呢?
我们仔细想下,实际上,可以根据第一步的走法把所有走法分为两类,第一类是第一步走了 1 个台阶,另一类是第一步走了 2 个台阶。所以 n 个台阶的走法就等于先走 1 阶后,n-1 个台阶的走法 加上先走 2 阶后,n-2 个台阶的走法。用公式表示就是:
f (n) = f(n - 1) + f(n - 2)
有了递推公式,递归代码基本上就完成了一半。我们再来看下终止条件。当有一个台阶时,我们不需要再继续递归,就只有一种走法。所以 f(1)=1。这个递归终止条件足够吗?我们可以用 n=2,n=3 这样比较小的数试验一下。
n=2 时,f(2)=f(1)+f(0)。如果递归终止条件只有一个 f(1)=1,那 f(2) 就无法求解了。所以除了 f(1)=1 这一个递归终止条件外,还要有 f(0)=1,表示走 0 个台阶有一种走法,不过这样子看起来就不符合正常的逻辑思维了。所以,我们可以把 f(2)=2 作为一种终止条件,表示走 2 个台阶,有两种走法,一步走完或者分两步来走。
所以,递归终止条件就是 f(1)=1,f(2)=2。这个时候,你可以再拿 n=3,n=4 来验证一下,这个终止条件是否足够并且正确。
我们把递归终止条件和刚刚得到的递推公式放到一起就是这样的:
f(1) = 1;
f(2) = 2;
f(n) = f(n-1)+f(n-2)
有了这个公式,我们转化成递归代码就简单多了。最终的递归代码是这样的:
if (n == 1) return 1;
if (n == 2) return 2;
return f(n-1) + f(n-2);
}
总结:
- 一、什么是递归?
1.递归是一种非常高效、简洁的编码技巧,一种应用非常广泛的算法,比如DFS深度优先搜索、前中后序二叉树遍历等都是使用递归。
2.方法或函数调用自身的方式称为递归调用,调用称为递,返回称为归。
3.基本上,所有的递归问题都可以用递推公式来表示,比如
f(n) = f(n-1) + 1;
f(n) = f(n-1) + f(n-2);
f(n)=n*f(n-1); - 二、为什么使用递归?递归的优缺点?
1.优点:代码的表达力很强,写起来简洁。
2.缺点:空间复杂度高、有堆栈溢出风险、存在重复计算、过多的函数调用会耗时较多等问题。 - 三、什么样的问题可以用递归解决呢?
一个问题只要同时满足以下3个条件,就可以用递归来解决:
1.问题的解可以分解为几个子问题的解。何为子问题?就是数据规模更小的问题。
2.问题与子问题,除了数据规模不同,求解思路完全一样
3.存在递归终止条件 - 四、如何实现递归?
1.递归代码编写
写递归代码的关键就是找到如何将大问题分解为小问题的规律,并且基于此写出递推公式,然后再推敲终止条件,最后将递推公式和终止条件翻译成代码。
2.递归代码理解
对于递归代码,若试图想清楚整个递和归的过程,实际上是进入了一个思维误区。
那该如何理解递归代码呢?如果一个问题A可以分解为若干个子问题B、C、D,你可以假设子问题B、C、D已经解决。而且,你只需要思考问题A与子问题B、C、D两层之间的关系即可,不需要一层层往下思考子问题与子子问题,子子问题与子子子问题之间的关系。屏蔽掉递归细节,这样子理解起来就简单多了。
因此,理解递归代码,就把它抽象成一个递推公式,不用想一层层的调用关系,不要试图用人脑去分解递归的每个步骤。 - 五、递归常见问题及解决方案
1.警惕堆栈溢出:可以声明一个全局变量来控制递归的深度,从而避免堆栈溢出。
2.警惕重复计算:通过某种数据结构来保存已经求解过的值,从而避免重复计算。 - 六、如何将递归改写为非递归代码?
笼统的讲,所有的递归代码都可以改写为迭代循环的非递归写法。如何做?抽象出递推公式、初始值和边界条件,然后用迭代循环实现。
参考如何用三行代码找到“最终推荐人
实例
实例
- 阶乘
def fact(n):
if n==1:
return 1
return n * fact(n -1)
上面就是一个实现阶乘的递归函数,我们来试一试。
>>> fact(1)
1
>>> fact(5)
120
可能有点懵吧,来看一看计算过程吧:
===> fact(5)
===> 5 * fact(4)
===> 5 * (4 * fact(3))
===> 5 * (4 * (3 * fact(2)))
===> 5 * (4 * (3 * (2 * fact(1))))
===> 5 * (4 * (3 * (2 * 1)))
===> 5 * (4 * (3 * 2))
===> 5 * (4 * 6)
===> 5 * 24
===> 120
- 斐波那契数列
def fib(n):
if n <2:
return n
else:
return fib(n -1) + fib(n -2)
- 汉诺塔
def hanoti(n,x1,x2,x3):
if(n == 1):
print('move:',x1,'-->',x3)
return
hanoti(n-1,x1,x3,x2)
print('move:',x1,'-->',x3)
hanoti(n-1,x2,x1,x3)