ggplot2如何画error bar charts

参考:
1.http://www.cookbook-r.com/Graphs/Plotting_means_and_error_bars_(ggplot2)/
2.https://www.zhihu.com/question/24779017/answer/38750383
3.https://zhuanlan.zhihu.com/p/28131878

R画图最重要的两点:1.数据类型;2.数据结构

  • 意思是你必须在画图之前弄清楚你的数据类型和结构

0. 初次接触ggplot2可以这样理解:

ggplot2的逻辑其实是真正实现了一个图层叠加的概念:一句语句代表一张图,然后再有最小的单元图层。

ggplot2相比于R基础包的绘图函数的优点:第一,有明确的起始(以ggplot函数开始)与终止(一句语句一幅图);其二,图层之间的叠加是靠“+”号实现的,越后面其图层越高;其三,绘图更加美观。R基础包的绘图函数没有一个停止绘图的标志,这使得有时候再处理会产生一些困惑。

ggplot2相比于R基础包的绘图函数的缺点:R基础包的绘图函数在做参数修改的时候,我们往往可以很方便地直接用一句单独的命令修改,譬如对于x轴的调整,觉得不满意就可以写命令直接调整。而ggplot2则意味着要重新作图。

1. 总结来说有以下几点:

  • ggplot2的核心理念是将绘图与数据分离,数据相关的绘图与数据无关的绘图分离
  • ggplot2是按图层作图
  • ggplot2保有命令式作图的调整函数,使其更具灵活性
  • ggplot2将常见的统计变换融入到了绘图中。

2.ggplot2的要素

ggplot图的元素可以主要可以概括如下:最大的是plot(指整张图,包括background和title),其次是axis(包括stick,text,title和stick)、legend(包括backgroud、text、title)、facet这是第二层次,其中facet可以分为外部strip部分(包括backgroud和text)和内部panel部分(包括backgroud、boder和网格线grid,其中粗的叫grid.major,细的叫grid.minor)。大致见下图,这部分内容的熟悉程度直接影响到对于theme的掌握,因此希望大家留心。

ggplot2的要素

3.ggplot2图层以及其他函数的分类

  • ggplot2里的所有函数可以分为以下几类:
  • 用于运算(我们在此不讲,如fortify_,mean_等)初始化、展示绘图等命令(ggplot,plot,print等)按变量组图(facet_等)真正的绘图命令(stat_,geom_,annotate),这三类就是实现一个函数一个图层的核心函数。
  • 微调图型:严格意义上说,这一类函数不是再实现图层,而是在做局部调整。scale_:直译为标尺,这就是与aes内的各种美学(shape、color、fill、alpha)调整有关的函数。guides:调整所有的text。coord_:调整坐标。theme:调整不与数据有关的图的元素的函数。

4. 绘图

初始化。

ggplot2风格的绘图的第一步就是初始化,说白了就是载入数据空间、选择数据以及选择默认aes。

p <- ggplot(data = , aes(x = , y = ))
  • data就是载入你要画的数据所在的数据框,指定为你的绘图环境,载入之后,就可以免去写大量的$来提取data.frame之中的向量。当然,如果你的数据都是向量,也可不指定,但是要在申明中标注data = NULL,不然就会得到不必要的报错。
  • 第二个是重头戏,即aes,是美学(aesthetic)的缩写。这是在ggplot2初学者眼里最不能理解的东西,甚至很多老手也会在犹豫,什么时候要把参数写在aes里,什么时候要写在aes外。我们做一个简单的,不非常恰当的解释:任何与数据向量顺序相关,需要逐个指定的参数都必须写在aes里。这之后我们会进一步解释,现在我们初始化的时候,最好只是把关于位置的x和y指定一下就好。
绘制图层。
  • 很多人在解释ggplot2的时候喜欢说,ggplot2绘图有两种函数,一类是geom_,绘图用的;一类是stat_,统计变换用的。这样说不是不对,只是很不恰当,很多人就会问出一些问题,比如,统计变换竟然是做运算用的,为什么可以用来画图?为什么stat_bin和geom_histgram画出来的图是一样,竟然一样,为什么要重复?
  • 事实上,任何一个ggplot2图层都包括stat和geom俩部分,或者说两个步骤(其实还包括position)。 而stat_identity则表示不做任何的统计变换。

5.绘图模板

我们将上面的代码转换为一个可重用的 ggplot2 绘图模板。要想生成一张图,将以下代码
中的尖括号部分替换为数据集、几何对象函数或映射集合即可:

     ggplot(data = <DATA>) +
       <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))

其余内容将向你展示如何完成并扩展这个模板,以制作出各种类型的图。我们将从 <MAPPINGS> 部分开始。

常见的错误
创建 ggplot2 图形时的一个常见问题是将 + 号放错了位置:+ 必须放在一行代码的末尾,而 不是开头。换句话说,请确保你没有粗心地写出以下这样的代码:

     ggplot(data = mpg)
     + geom_point(mapping = aes(x = displ, y = hwy))
# Load ggplot2
library(ggplot2)

# import data
WT = c(10.43149292, 7.861843613, 6.410500896)
LPS = c(61.35480134, 104.51002, 39.75195443, 81.71422978)

x <- c(WT,LPS)
group<-c(rep("WT",3),rep("LPS",4))

t.test(x~group, paired = F, var.equal = T)
sd1 = sd(WT)
sd2 = sd(LPS)
sd1
sd2

# create dummy data
data <- data.frame(
  Adipoq = c("LPS", "Control"),
  TPM = c(71.83275139, 8.234612476),
  sd = c(27.71529, 2.036249)
)

# Most basic error bar
ggplot(data) +
  geom_bar( aes(x=Adipoq, y=TPM), stat="identity", fill="black", alpha=0.5) +
  geom_errorbar( aes(x=Adipoq, ymin=TPM-sd, ymax=TPM+sd), width=0.4, colour="orange", alpha=0.9, size=0.6)

带error bar 的charts
折线图
image.png
xlim和ylim为坐标刻度范围

xlab和ylab为坐标标题

lwd  line width for drawing symbols

main 为图标题

sub 为图下标题

col.main 为设置图标题颜色

font.main 为设置图标题字体

cel 为symble 大小

lty 为折线类型 1为实线, 2为虚线
# Create data:
a=c(1:5)
b=c(5,3,4,5,5)
c=c(4,5,4,3,1)

# Make a basic graph
plot( b~a , type="b" , bty="l" , xlab="value of a" , ylab="value of b" , col=rgb(0.2,0.4,0.1,0.7) , lwd=3 , pch=17 , ylim=c(1,5) )
lines(c ~a , col=rgb(0.8,0.4,0.1,0.7) , lwd=3 , pch=19 , type="b" )

# Add a legend
legend("bottomleft", 
  legend = c("Group 1", "Group 2"), 
  col = c(rgb(0.2,0.4,0.1,0.7), 
  rgb(0.8,0.4,0.1,0.7)), 
  pch = c(17,19), 
  bty = "n", 
  pt.cex = 2, 
  cex = 1.2, 
  text.col = "black", 
  horiz = F , 
  inset = c(0.1, 0.1))
首先要弄清楚数据类型
  • 如果x是连续变量,直接传入即可。如果x是离散变量,此时x需要因子化,并在aes里设定group参数为1

  • 线可以是实线,也可以是点状的,可以用个linetpye进行设定,参数可以选择solid, dashed, dotted等

https://blog.csdn.net/jisuanjiguoba/article/details/73770282
https://blog.csdn.net/zhaozhn5/article/details/79264196

library(ggplot2)

data1 <- read.table("/Users/quyue/Desktop/bm_time_mean.txt", header = T)


datan<-data.frame(data1)

datan$time <- factor(datan$time)
str(datan)


ggplot(datan, aes(x=time, y=mean, color= gene)) + 
  geom_line(aes(x=time, y=mean, color= gene)) +
  geom_point()
# 数据类型不对,画不出线

genename=c("adipoq","adipoq","adipoq","Cebpa","Cebpa","Cebpa","Pparg","Pparg","Pparg","Lpl", "Lpl", "Lpl", "Apoe","Apoe","Apoe","Lepr","Lepr","Lepr","Cebpb","Cebpb","Cebpb","Cebpd","Cebpd","Cebpd")
time=c("-2w-","2m","2y","-2w-","2m","2y","-2w-","2m","2y","-2w-","2m","2y","-2w-","2m","2y","-2w-","2m","2y","-2w-","2m","2y","-2w-","2m","2y")
mean=c(2.345460836,
       8.234612478,
       155.3504286,
       12.07346902,
       16.47575095,
       40.67480404,
       3.066193369,
       3.714483696,
       8.268032454,
       38.49995415,
       55.91558454,
       115.384115,
       57.73547038,
       86.43911626,
       476.6139135,
       10.32626271,
       49.60748252,
       193.2777137,
       21.98790658,
       74.50810997,
       53.91309632,
       27.69452274,
       51.16709368,
       53.91309632)
bmaging=data.frame(genename,time,mean)
bmaging
ggplot(bmaging, aes(x=factor(time), y=mean, colour=genename,group=genename,shape=genename)) + 
  geom_line(size=0.6) +
  geom_point(size=2)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343