总所周知,java concurrent包的工具类是构建在AbstractQueuedSynchronizer类上的基础上的,而这个类是Doug Lea大神基于CHL队列实现的同步器。这个强大的同步器是怎样实现的呢?我们来一探究竟。
因为AQS的代码比较难以理解,我们从concurrent包下的并发工具类着手开始研究。从最简单的CountDownLatch开始,首先看它的源码
public class CountDownLatch {
/**
* Synchronization control For CountDownLatch.
* Uses AQS state to represent count.
*/
private static final class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 4982264981922014374L;
Sync(int count) {
setState(count);
}
int getCount() {
return getState();
}
protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1;
}
protected boolean tryReleaseShared(int releases) {
// Decrement count; signal when transition to zero
for (;;) {
int c = getState();
if (c == 0)
return false;
int nextc = c-1;
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
}
CountDownlatch类定义了一个Sync类继承自AQS,实现的了AQS的tryAcquireShared和tryReleaseShared方法,share顾名思义是共享锁。首先从await方法入手:
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
await方法调用的AQS的acquireSharedInterruptibly
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}
从这个方法看,await方法是可中断的,如果当前线程被中断,则直接向上抛InterruptedException。如果正常执行,则会调用tryAcquireShared方法,这个是在之类中实现的。现在回到CountDownLatch,看tryAcquireShared的实现:
protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1;
}
很简单,如果state为0则返回1,否则,返回-1。state是构造函数里传进来的。我们都知道使用CountDownlatch时传进来的数字表示并发执行的线程数,由此联想state就是持有锁的线程数。从acquireSharedInterruptibly方法可以看到,当前state!=0,即并发任务线程还没执行完时,会进入doAcquireSharedInterruptibly:
private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
首先看addWaiter方法
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
也就是说在pred为null的时候会初始化队列
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
从上面代码看初始化之后的队列是这样的:
head只是指向一个空节点,这一点对于理解后面的代码很重要,再回到doAcquireSharedInterruptibly,p的前继节点就是head,所以会进入下面的if分支(至于为什么有这个if判断后面再详解),对于CountDownLatch,在并发任务还没完成的时候,tryAcquireShared返回值为-1,所以就不会往下走。直接进入shouldParkAfterFailedAcquire
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
return true;
if (ws > 0) {
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
pred就是head,初始化之后waitStatus=0,进入else分支,故head的waitStatus被更新为SIGNAL,再回到doAcquireSharedInterruptibly,这个时候如果线程没有被中断,那么会接着循环,再次进入shouldParkAfterFailedAcquire,这个是进入第一个if分支,返回true,那么就是进入parkAndCheckInterrupt,将当前线程阻塞住,这就是CountDownlatch调用await后阻塞住的原因。
从上面的分析可以知道,对于CountDownlatch,在并发任务还没结束的时候,如果另外一个线程B再调用await方法,那么当前线程会放到等待队列的最后面。第一个节点park住的时候,它的waitStatus还是0,所以这次,shouldParkAfterFailedAcquire会把第一个节点的waitStatus设置为SIGNAL,同时下次循环会park住线程B
AQS获取锁的过程已经了解清楚了,下面来看看AQS释放锁的过程。还是从CountDownLatch的countdown()方法入手。countdown()是直接调用AQS的releaseShared
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}
从代码看,tryReleaseShared是在子类中实现的:
protected boolean tryReleaseShared(int releases) {
// Decrement count; signal when transition to zero
for (;;) {
int c = getState();
if (c == 0)
return false;
int nextc = c-1;
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
从tryReleaseShared方法代码来看,只有等所有并发任务执行完,tryReleaseShared才会返回true,才会执行doReleaseShared
private void doReleaseShared() {
/*
* Ensure that a release propagates, even if there are other
* in-progress acquires/releases. This proceeds in the usual
* way of trying to unparkSuccessor of head if it needs
* signal. But if it does not, status is set to PROPAGATE to
* ensure that upon release, propagation continues.
* Additionally, we must loop in case a new node is added
* while we are doing this. Also, unlike other uses of
* unparkSuccessor, we need to know if CAS to reset status
* fails, if so rechecking.
*/
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue; // loop to recheck cases
unparkSuccessor(h);
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
if (h == head) // loop if head changed
break;
}
}
如果head节点的waitStatus为SIGNAL,则先把head节点的status设置为0,然后进入unparkSuccessor
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
LockSupport.unpark(s.thread);
}
在通常情况下,s!=null并且s.waitStatus为SIGNAL,所以head节点的后继节点会被唤醒。就是说每次调用releaseShared只会唤醒等待队列中head节点之后的线程。
分析到这里,试想这个使用CountDownLatch场景,线程A和线程B,都调用await方法等待线程B、线程C完成任务。那么在线程B、线>程C完成任务的时候,主线程调用releaseShared进入doReleaseShared唤醒head节点之后的节点线程。因为原来的线程是在doAcquireSharedInterruptibly里的for循环最后park住,现在仍然回到该处,继续下次循环。这个时候会进入上面提到的if分支,进入setHeadAndPropagate。
private void setHeadAndPropagate(Node node, long propagate) {
Node h = head; // Record old head for check below
setHead(node);
/*
* Try to signal next queued node if:
* Propagation was indicated by caller,
* or was recorded (as h.waitStatus) by a previous operation
* (note: this uses sign-check of waitStatus because
* PROPAGATE status may transition to SIGNAL.)
* and
* The next node is waiting in shared mode,
* or we don't know, because it appears null
*
* The conservatism in both of these checks may cause
* unnecessary wake-ups, but only when there are multiple
* racing acquires/releases, so most need signals now or soon
* anyway.
*/
if (propagate > 0 || h == null || h.waitStatus < 0) {
Node s = node.next;
if (s == null || s.isShared())
doReleaseShared();
}
}
从代码来看,setHeadAndPropagate就是把当前当前head节点remove掉,设置当前线程节点为head节点(也就是第二个节点)。同时在共享锁的模式下,会调用doReleaseShared,唤醒当前节点的后继节点,这就是propagate的概念。同理后续节点又会再唤醒它后面的节点,直到整个队列都被唤醒。
至此,已基本了解AQS的工作原理的,为了加深印象,我们来看下面的线程队列的变化过程图。
线程thread1调用acquireSharedInterruptibly之后,线程队列如下图,同时thread1被park住
另外一个线程thead2再次调用acquireSharedInterruptibly之后,线程队列如下图,同时thread2被park住
这个时候,另一个线程触发releaseShared,线程队列如下图,同时thread1被unpark
thread1被unpark之后,会进入setHeadAndPropagate,setHead之后,线程队列如下图
thread1调用doReleaseShared唤醒thread2后,线程队列如下图
thread2 进入setHeadAndPropagate,setHead之后,线程队列如下图