声学模型GMM-HMM

模型训练方式

在语音识别中,HMM的每个状态都可对应多帧观察值,观察值概率的分布不是离散的,而是连续的,适合用GMM来进行建模。HMM模块负责建立状态之间的转移概率分布,而GMM模块则负责生成HMM的观察值概率。

HMM-GMM架构

模型自适应:由于各地口音、采集设备、环境噪声等音素的差异,已训练过的GMM-HMM很可能和新领域的测试数据不匹配,导致识别效果变差,需要做自适应训练。

MAP(最大后验概率估计):算法本质是重新训练一次,并且平衡原有模型参数和自适应数据的估计。

MLLR(最大似然线性回归):算法核心思想是将原模型的参数进行线性变换后再进行识别,其优点是使用少量语音即可以对所有模型进行自适应训练,只要得到线性变换矩阵即可。

每个音素(或三音素)用一个 HMM 建模,每个 HMM 状态的发射概率对应一个 GMM。GMM-HMM 的目的即是找到每一帧属于哪个音素的哪个状态。GMM-HMM 的训练使用自我迭代式的 EM 算法,更直接的方式是采用维特比训练,即把EM算法应用到GMM参数的更新上,要求显示的输入每一帧对应的状态,使用带标注的训练数据更新GMM的参数,这种训练方法比Baum-Welch算法速度更快,模型性能却没有明显损失。

帧与状态进行对齐

1、首次对齐时把训练样本按该句的状态个数平均分段。

2、每次模型参数的迭代都需要成对的使用gmm-acc-stats-ali和gmm-est工具。

3、进行多轮迭代训练后使用gmm-align-compiled工具通过其内部的维特比算法生成对齐结果。

三因子模型训练

单因子模型的基本假设是:一个音素的实际发音,与其左右相邻或相近的音素(上下文音素)无法。三因子结构中的每一个音素建模实例,都由其中心音素及其左右各一个上下文音素共同决定。无论是单因子还是三因子,通常都使用三状态的HMM结构来建模。为了解决三因子模型参数爆炸问题,将所有的三因子模型放到一起进行相似性聚类(决策树),发音相似的三因子被聚类到同一个模型,共享参数。训练脚本:steps/train_deltas.sh,目标训练一个10000状态的三因子系统:

1、以单因子为基础,训练一个5000状态的三因子模型

2、用5000状态的模型重新对训练数据进行对齐,其对齐质量必然比单因子系统对齐质量高

3、用新的对齐再去训练一个10000状态的三因子系统

基本概念

 phone-id:音素的 ID,参见 data/lang/phones.txt,强制对齐的结果不含 0(表示<eps>)和消歧符 ID;

hmm-state-id:单个 HMM 的状态 ID,从 0 开始的几个数,参见 data/lang/topo;

 pdf-id:GMM 的 ID,从 0 开始,总数确定了 DNN 输出节点数,通常有数千个;

 transition-index:标识单个 Senone HMM 中一个状态的不同转移,从 0 开始的几个数;

 transition-id:上面四项的组合 (phone-id,hmm-state-id,pdf-id,transition-index),可以涵盖所有可能动作,表示哪个 phone 的哪个 state 的哪个 transition 以及这个 state 对应的 pdf 和这个 transition 的概率,其中元组 (phone-id,hmm-state-id,pdf-id) 单独拿出来,叫 transition-state,与 transition-id 都从1开始计数。

关系:transition-id可以映射到唯一的transition-state,而transition-state可以映射到唯一的pdf-id,因此transition-id可以映射到唯一的pdf-id。pdf-id不能唯一的映射成音素,因此kaldi使用transition-id表示对齐的结果。

各元素关系H

区分性训练

语音识别过程是在解码空间中衡量和评估所有的路径,将打分最高的路径代表的识别结果作为最终的识别结果。传统的最大似然训练是使正确路径的分数尽可能高,而区分性训练则着眼于加大这些路径之间的打分差异,不仅要使正确路径的分数仅可能高,还要使错误路径尤其是易混淆路径的分数尽可能低。

常用的区分性训练准则有最大互信息、状态级最小贝叶斯风险、最小音素错误。

分子:对于某条训练数据,其正确标注文本在解码空间中对应的所有路径的集合。

分母:理论上值整个搜索空间。通常会通过一次解码将高分路径过滤出来,近似整个分母空间,从而有效的减小参与区分性优化的分母规模。

词格(Lattice):分子、分母其实都是解码过程中一部分解码路径的集合,将这些路径紧凑有效的保存下来的数据结构就是词格。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,386评论 6 479
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,939评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,851评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,953评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,971评论 5 369
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,784评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,126评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,765评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,148评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,744评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,858评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,479评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,080评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,053评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,278评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,245评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,590评论 2 343