首先我们将theta作为横坐标,omega作为纵坐标,同时变化F_D的参数,比较这两种情况下摆的混沌效应.
![](http://latex.codecogs.com/png.latex?d\omega/dt = - \frac{g}{l}sin(\theta)-q\frac{d\theta}{dt}+F_Dsin(\Omega_D t))
通过欧勒法得到代码的设计方法:
for each time step i(beginning with i =1),calculate
\omega and \theta at time step i+1.
- ![](http://latex.codecogs.com/png.latex?\omega_{i+1}=\omega_i-[(g/l)sin\theta_i-q\omega_i+F_Dsin(\Omega_Dt_i)]\Delta t)
- ![](http://latex.codecogs.com/png.latex?\theta_{i+1}=\theta_i+\omega_{i+1}\Delta t)
- if \theta_{i+1} is out of the range[-pi,pi],add or substract 2pi to keep it in the range.
- ![](http://latex.codecogs.com/png.latex?t_{i+1}=t_i+\Delta t)
- Repeat
代码实现
def swing(self):
loop = True
i = 0
while(loop):
self.omega.append(self.omega[i] + (-self.g_l * math.sin(self.theta[i]) - self.q * self.omega[i] +
self.f_d * math.sin(self.omega_d * self.t[i])) * self.dt)
self.temp = self.theta[i] + self.omega[i + 1] * self.dt
if math.pi < self.temp:
self.temp -= 2 * math.pi
elif - math.pi > self.temp:
self.temp += 2 * math.pi
self.theta.append(self.temp)
self.t.append(self.t[i] + self.dt)
i += 1
if self.total_time < self.t[i]:
loop = False
Then we only plot omega versus theta only at times that are in phase with the driving force.
That is,we only display the point when
![](http://latex.codecogs.com/png.latex?\Omega_D t=2n\pi)
where n is an integer.
- 也就是说,当满足
![](http://latex.codecogs.com/png.latex?|t-2n\pi/\Omega_D|<\Delta t)时,我们就将相应的点放置上去
代码实现
def Omega2Theta(self):
self.swing()
loop = True
i = 0
n = 0
while(loop):
# omega_D * t = 2 * pi * n
if (self.t[i] > (2*n+1)*math.pi/self.omega_d):
n += 1
if (abs(self.t[i] - 2 * n * math.pi/self.omega_d) < (self.dt/2)):
self.theta_ps.append(self.theta[i])
self.omega_ps.append(self.omega[i])
i += 1
if self.total_time < self.t[i]:
loop = False
接下来让我们变化一下参数:
我们观察一下\theta与t在变化的驱动力下的关系图
- 致谢
卢江玮的代码助攻~