理解Dijkstra算法

学习过最短路径问题的人都不会不知道Dijkstra算法。这个算法适用于解决无负权图的单源(且不管是否有向)最短路径问题。这篇小文来谈谈如何理解这一算法。

这里首先给出一个Python 3的代码实现(以下代码出自Python Algorithms一书,略有改动)。

from heapq import heappush, heappop


def dijkstra(G, s):
    D, P, Q = {}, {}, [(0, None, s)]
    while Q:
        du, pu, u = heappop(Q)
        D[u], P[u] = du, pu
        for v in G[u]:
            if v not in D:
                heappush(Q, (du + G[u][v], u, v))
    return D, P

Dijkstra算法可以从很多角度去理解。我个人觉得最便于理解和记忆的角度,是将其视为一个图遍历算法。这从上面的代码中就能够看出来。遍历节点的算法都需要记录“前线”,也就是所有已经访问过但没有“完全考察”的节点。不同的遍历算法,记录“前线”所用的数据结构也不同。比如,BFS使用的是FIFO的队列,DFS可以使用FILO的栈;而上面的代码使用的则是一个优先队列。(实际上,如果待解决的图的所有边的权重都为同一正值的话,那么就可以用BFS来解决。换言之,BFS算法可以视为Dijkstra算法的一个特例,是可以用于(实际上是最佳的)解决无权图的单源最短路径的算法。)

那么,怎么直观地去理解Dijkstra算法所表示的这一遍历过程呢?比如说,我们要解决的问题如果可以表现为下面这幅图——这是幅无向无负权图,其中S点表示起点,每条边的权重就是标注在旁边的数字——那么怎么去表现Dijkstra算法所设定的遍历呢?

image

这里需要耍一个思维上的小花招:我们把每条边想象成真实的路径,然后把权重想象成对应路径的长度。然后假设站在起点S的是旋涡鸣人。在0时刻,旋涡鸣人首先将起点S涂成黑色(在上面代码中表现为D[s], P[s] = 0, None),然后沿每条从S点出发的路径——在上图里就是SA、SB、SC三条边——派出一名影分身。这些影分身的速度都一样,每前进1个长度需花费1个单位的时间,所以在时刻7、9、14,这三个影分身分别依次到达C、B、A点。每个影分身到达自己的目的地时,都会检查该点有没有被涂黑;如果已经被涂黑,说明有别的影分身走了一条更短的路径来过这个点,那么这个后到的影分身就完成了自己的使命,不用再考察已被涂黑的点的后续节点,可以“噗”地一下化成青烟消失了;如果没有被涂黑,那么说明这个影分身走的是起点S到该点的最短路径,记下现在的时刻(也就是所循路径的长度,也即到S点的距离,D[u] = du)以及上一个节点(P[u] = pu),把这一点涂黑,最后朝每条未被涂黑的邻点派出新的影分身。例如上面的例子里,时刻9时,有一个从起点S出发的影分身会到达B点。由于B此时还是白色的,说明S到B的最短路径的长度为9。涂黑B点,然后朝A、E两点各派出一名影分身(之所以不往C点派影分身,是因为C点已经在时刻7被另一个从S点出发的影分身涂黑了,也就是已经在D这个dict里了)。注意从B点往A点出发的影分身将在时刻11(=9+2)到达,早于从S点出发往A点去的那个影分身(他将在时刻14到达),所以等后者到达时,会发现A点已经是黑色的了。如此重复,直到所有的影分身都消失了,也即所有从S点能够到达的点都涂成了黑色(遍历),也就是“前线”中不再有仍在路上的影分身(while Q不再继续)。这时候,所有被涂黑的点,都记录下了涂黑的时刻(最短距离)和每一个中间节点(最短路径)。

按照这种理解,那么算法中的优先队列其实可以看作是时间轴。每次往优先队列里push一个元素,代表新派出一个影分身;而每次从优先队列里pop出一个元素,则代表了某个影分身到达了其目的节点。而且,这种思路还可以帮我们从直观上理解Dijkstra算法的适用范围:必须无负权边,因为影分身所走路径的长度不可能为负;既可以是有向图也可以是无向图,影分身按照允许的方向走就行了。

以上就是我对Dijkstra算法的一点理解。希望能够对学习算法的同学有点帮助。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容