ElasticSearch优化系列五:机器设置(硬盘、CPU)

硬盘对集群非常重要,特别是建索引多的情况。磁盘是一个服务器最慢的系统,对于写比较重的集群,磁盘很容易成为集群的瓶颈。
如果可以承担的器SSD盘,最好使用SSD盘。如果使用SSD,最好调整I/O调度算法。RAID0是加快速度的不错方法。
ES建议机器配置:64G内存 SSD硬盘 RAID0,不要使用NAS。

自动调整存储带宽

在2.0.0之前,elasticsearch会限制合并速度(merges),默认为20MB/sec。但是这个速率经常是显得太小,导致合并速度落后于索引速度,进而限制了索引速度。

现在Elasticsearch2.0.0,使用了自动调整合并IO速度方式:如果合并落于索引速度,合并IO速度会逐渐增大,并且随着合并的持续进行会减小。在索引吞吐量小的时候,即使突然来了一个大的合并任务,这种情况也不会吞噬整个节点可用的IO,极小化的降低对正在进行的查询和索引的影响。

但是对索引请求大的情况下,允许的合并速度会自动调整到跟上索引的速度。

有了2.0.0这个特性,意味着我们不需要管任何的限制值了,只要用默认的就好了。

2.0.0之前store throttle 设置值有如下几个,在2.0.0版本已经删除了。

indices.store.throttle.type, 
indices.store.throttle.max_bytes_per_sec, 
index.store.throttle.type, 
index.store.throttle.max_bytes_per_sec

另外,Recovery/snapshot/restore 仍然是有速度限制的,默认都是20MB/sec。

多个path.data 路径

如果磁盘空间和IO性能是Elasticsearch的瓶颈的话,使用多个IO设备(通过设置多个path.data路径)存储shards,能够增加总的存储空间和提升IO性能。
在Elasticsearch2.0之前的版本,也是配置多个path.data路径,但是其相当于RAID 0,每个shards的数据会分布在所有的磁盘上。当一个节点上有一块盘坏了的情况下,该节点上所有的shards都会损坏了。需要恢复该节点上的所有shards。
在2.0.0版本,把这个实现改成了:每个shards所有的数据只会在一块磁盘上面。这样即使一个节点的一块磁盘损坏了,也只是损失了该磁盘上的shards,其它磁盘上的shards安然无事。只需要恢复该块盘上的shards即可。
升级到2.0.0版本时,旧版本一个shard分布到所有磁盘上的数据,会拷贝到一块盘上。
对应这个改变,在设计shards时,如果一个节点有10块磁盘,共3个节点,则shards至少30个,才能分布在30块盘上(即最大限度使用磁盘空间)。
参考
https://www.elastic.co/blog/performance-indexing-2.0
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html

CPU(threadpool)

线程不是越大越好,一般设置threadpool数为CPU cores的个数
搜索:int((# of cores * 3) / 2) + 1
ElastiSearch服务器有多个线程池大小配置。主要有:index,search,suggest,get,bulk,percolate,snapshot,snapshot_data,warmer,refresh。
在此主要针对index和search进行一个配置调整。index操作包含:创 建/更新/删除索引数据。search操作主要针对用户的各种搜索操作。
具体配置如下:

threadpool:
    index:
        type: fixed
        size: 100
    search:
        type: fixed
        size: 1000

参考文档
https://www.elastic.co/guide/en/elasticsearch/guide/current/heap-sizing.html

未完待续

你可能还会喜欢

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,723评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,485评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,998评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,323评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,355评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,079评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,389评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,019评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,519评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,971评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,100评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,738评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,293评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,289评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,517评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,547评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,834评论 2 345

推荐阅读更多精彩内容