ConcurrentHashMap源码解析

ConcurrentHashMap源码解析

[TOC]

jdk8之前的实现原理

jdk8的实现原理

JDK8的实现已经抛弃了Segment分段锁机制,利用CAS+Synchronized来保证并发更新的安全,底层依然采用数组+链表+红黑树的存储结构。

变量解释

  1. table:默认为null,初始化发生在第一次插入操作,默认大小为16的数组,用来存储Node节点数据,扩容时大小总是2的幂次方。

  2. nextTable:默认为null,扩容时新生成的数组,其大小为原数组的两倍。

  3. sizeCtl :默认为0,用来控制table的初始化和扩容操作,具体应用在后续会体现出来。

    • -1 代表table正在初始化
    • -N 表示有N-1个线程正在进行扩容操作
    • 其余情况:
      • 1、如果table未初始化,表示table需要初始化的大小。
      • 2、如果table初始化完成,表示table的容量,默认是table大小的0.75倍,居然用这个公式算0.75(n - (n >>> 2))。
  4. Node:保存key,value及key的hash值的数据结构。

  5. ForwardingNode:一个特殊的Node节点,hash值为-1,其中存储nextTable的引用。只有table发生扩容的时候,ForwardingNode才会发挥作用,作为一个占位符放在table中表示当前节点为null或则已经被移动。

初始化

实例化ConcurrentHashMap时带参数时,会根据参数调整table的大小,假设参数为100,最终会调整成256,确保table的大小总是2的幂次方。

private static final int tableSizeFor(int c) {  
    int n = c - 1;  
    n |= n >>> 1;  
    n |= n >>> 2;  
    n |= n >>> 4;  
    n |= n >>> 8;  
    n |= n >>> 16;  
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;  
}  

初始化table

    private final Node<K,V>[] initTable() {  
        Node<K,V>[] tab; int sc;  
        while ((tab = table) == null || tab.length == 0) {  
        //如果一个线程发现sizeCtl<0,意味着另外的线程执行CAS操作成功,当前线程只需要让出cpu时间片  
            if ((sc = sizeCtl) < 0)   
                Thread.yield(); // lost initialization race; just spin  
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {  
                try {  
                    if ((tab = table) == null || tab.length == 0) {  
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;  
                        @SuppressWarnings("unchecked")  
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];  
                        table = tab = nt;  
                        sc = n - (n >>> 2);  
                    }  
                } finally {  
                    sizeCtl = sc;  
                }  
                break;  
            }  
        }  
        return tab;  
    }  

put操作

    final V putVal(K key, V value, boolean onlyIfAbsent) {  
        if (key == null || value == null) throw new NullPointerException();  
        int hash = spread(key.hashCode());  
        int binCount = 0;  
        for (Node<K,V>[] tab = table;;) {  
            Node<K,V> f; int n, i, fh;  
            if (tab == null || (n = tab.length) == 0)  
                tab = initTable();  
            // table中定位索引位置,n是table的大小
            // 如果f为null,说明table中这个位置第一次插入元素,利用Unsafe.compareAndSwapObject方法插入Node节点。
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {  
                
                // 如果CAS成功,说明Node节点已经插入,随后addCount(1L,binCout)方法会检查当前容量是否需要进行扩容。如果CAS失败,说明有其它线程提前插入了节点,自旋重新尝试在这个位置插入节点。
                if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null)))  
                    break; // no lock when adding to empty bin  
            }  
            // 如果f的hash值为-1,说明当前f是ForwardingNode节点,意味有其它线程正在扩容,则一起进行扩容操作。
            else if ((fh = f.hash) == MOVED)  
                tab = helpTransfer(tab, f);  
            //省略部分代码  
        }  
        addCount(1L, binCount);  
        return null;  
    }  

hash算法

static final int spread(int h) {return (h ^ (h >>> 16)) & HASH_BITS;}

获取table中对应的元素f

static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
    return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
}

Doug Lea采用Unsafe.getObjectVolatile来获取,也许有人质疑,直接table[index]不可以么,为什么要这么复杂?
在java内存模型中,我们已经知道每个线程都有一个工作内存,里面存储着table的副本,虽然table是volatile修饰的,但不能保证线程每次都拿到table中的最新元素,Unsafe.getObjectVolatile可以直接获取指定内存的数据,保证了每次拿到数据都是最新的。

链表或红黑树操作

其余情况把新的Node节点按链表或红黑树的方式插入到合适的位置,这个过程采用同步内置锁实现并发。

synchronized (f) {
    // 在节点f上进行同步,节点插入之前,再次利用tabAt(tab, i) == f判断,防止被其它线程修改。 
    if (tabAt(tab, i) == f) {
        // 如果f.hash >= 0,说明f是链表结构的头结点,遍历链表,如果找到对应的node节点,则修改value,否则在链表尾部加入节点。
        if (fh >= 0) {
            binCount = 1;
            for (Node<K,V> e = f;; ++binCount) {
                K ek;
                if (e.hash == hash &&
                    ((ek = e.key) == key ||
                     (ek != null && key.equals(ek)))) {
                    oldVal = e.val;
                    if (!onlyIfAbsent)
                        e.val = value;
                    break;
                }
                Node<K,V> pred = e;
                if ((e = e.next) == null) {
                    pred.next = new Node<K,V>(hash, key,
                                              value, null);
                    break;
                }
            }
        }
        // 如果f是TreeBin类型节点,说明f是红黑树根节点,则在树结构上遍历元素,更新或增加节点。
        else if (f instanceof TreeBin) {
            Node<K,V> p;
            binCount = 2;
            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                           value)) != null) {
                oldVal = p.val;
                if (!onlyIfAbsent)
                    p.val = value;
            }
        }
    }
}
// 如果链表中节点数binCount >= TREEIFY_THRESHOLD(默认是8),则把链表转化为红黑树结构。
if (binCount != 0) {
    if (binCount >= TREEIFY_THRESHOLD)
        treeifyBin(tab, i);
    if (oldVal != null)
        return oldVal;
    break;
}

table 扩容

当table容量不足的时候,即table的元素数量达到容量阈值sizeCtl,需要对table进行扩容。

整个扩容分为两部分:

  1. 构建一个nextTable,大小为table的两倍。
  2. 把table的数据复制到nextTable中。

这两个过程在单线程下实现很简单,但是ConcurrentHashMap是支持并发插入的,扩容操作自然也会有并发的出现,这种情况下,第二步可以支持节点的并发复制,这样性能自然提升不少,但实现的复杂度也上升了一个台阶。

先看第一步,构建nextTable,毫无疑问,这个过程只能只有单个线程进行nextTable的初始化,具体实现如下:

    private final void addCount(long x, int check) {  
        // 省略部分代码  
        if (check >= 0) {  
            Node<K,V>[] tab, nt; int n, sc;  
            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&  
                   (n = tab.length) < MAXIMUM_CAPACITY) {  
                int rs = resizeStamp(n);  
                if (sc < 0) {  
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||  
                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||  
                        transferIndex <= 0)  
                        break;  
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))  
                        transfer(tab, nt);  
                }  
                else if (U.compareAndSwapInt(this, SIZECTL, sc,  
                                             (rs << RESIZE_STAMP_SHIFT) + 2))  
                    transfer(tab, null);  
                s = sumCount();  
            }  
        }  
    }  

get操作

public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    int h = spread(key.hashCode());
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (e = tabAt(tab, (n - 1) & h)) != null) {
        if ((eh = e.hash) == h) {
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;
        }
        else if (eh < 0) // 树
            return (p = e.find(h, key)) != null ? p.val : null;
        while ((e = e.next) != null) { // 链表
            if (e.hash == h &&
                ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容