算法的时空复杂度分析

本文首发于 LOGI'S BLOG,由作者转载。

大 O 表示法

大 O 表示法并不具体表示代码的实际执行时间和实际占用空间,而代表代码执行时间和占用空间随数据规模增加的增长趋势,所以用大 O 表示法定义的时空复杂度分别叫做 渐进时间复杂度(Asymptotic /ˌæsimp'tɔtik,-kəl/ Time Complexity)渐进空间复杂度(Asymptotic Space Complexity)。算法的空间复杂度计算相对容易,以下仅介绍时间复杂度。

多项式量级复杂度

复杂度根据量级可分为 多项式(Polynomial /ˌpɑlɪ'nomɪəl/)非多项式量级(Non-Deterministic Polynomial),O(2n) 和 O(n!) 属于后者。当数据规模 n 越来越大时,非多项式量级算法的执行时间会急剧增加,甚至达到无限长,所以非多项式量级算法是不可接受的低效算法。

O(logn)

根据换底公式,logab=logcb/logca,logab=1/logba,有 log3n=log32 * log2n。可以看出,任意底的对数都可化为 C*log2n,所以,在对数阶复杂度表示法中,我们忽略对数的底,统一表示为 O(logn)。

O(m+n) 和 O(m*n)

如果算法的数据规模为多个变量,并且无法事先评估他们的大小,那么在表示时间复杂度时要把他们全部写出。

最好、最坏、平均和均摊时间复杂度

// 全局变量,大小为 10 的数组 array,长度 len,下标 i。
int array[] = new int[10]; 
int len = 10;
int i = 0;

// 往数组中添加一个元素
void add(int element) {
   if (i >= len) { // 数组空间不够了
     // 重新申请一个 2 倍大小的数组空间
     int new_array[] = new int[len*2];
     // 把原来 array 数组中的数据依次 copy 到 new_array
     for (int j = 0; j < len; ++j) {
       new_array[j] = array[j];
     }
     // new_array 复制给 array,array 现在大小就是 2 倍 len 了
     array = new_array;
     len = 2 * len;
   }
   // 将 element 放到下标为 i 的位置,下标 i 加一
   array[i] = element;
   ++i;
}

上面这段代码是往数组尾插入元素,并且实现了自动扩容功能。在数组未满的情况下,直接放到数组尾即可,因此,最好时间复杂度为 O(1)。在数组满的情况下,需要进行 n 次移动,并申请 n 个空间,因此,最坏时间复杂度是 O(n),最坏空间复杂度是 O(n)。

再看平均时间复杂度,总共有 n+1 种情况,其中数组未满有 n 种情况,每种的概率都是 1/n+1。数组满有 1 种情况,概率也是 1/n+1,所以平均时间复杂度为 (n * 1/n+1 + 1/n+1)/n+1 = O(1)。

最后计算 均摊时间复杂度,首先说明其概念和适用场景。对某个数据结构做一组连续操作,大部分情况下时间复杂度都很低,只有个别情况下时间复杂度比较高,并且这些操作间存在前后连贯的时序关系,此时,我们便可将这组操作放在一起考虑,看能否将较高时间复杂度的那些操作耗时,平摊到其他低时间复杂度操作上,这种分析方法就叫做 摊还分析,通过摊还分析得到的时间复杂度,被称为均摊时间复杂度。一般情况下,能够应用均摊时间复杂度分析的场合,均摊复杂度等于最好时间复杂度。

对于上例,每一次 O(n) 的移动操作,都会跟着 n 次 O(1) 的插入操作,所以把耗时多的那次操作均摊到接下来的 n 次耗时少的操作上,这一组连续操作的均摊时间复杂度就是 O(1)。

简要总结

最好时间复杂度计算简单,与此同时,参考意义也不是很大。最坏时间复杂度计算较为复杂,如用于关键环节需要重点考虑。平均时间复杂度计算最为复杂,也是最常用的评价指标,而可以使用摊还分析的算法,使用均摊时间复杂度代替常规的加权平均/期望得出的平均复杂度更具实际意义。

参考文献

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342