Opencv 图像识别Android实战(识别扑克牌 8.处理筛选区)

先看源代码图片


image.png

在242行通过宽度,高度,宽高比筛选出可能的候选区,并保存在rects中,在需要的地方,按照rects中保存的矩形框裁剪下来。如果选中了学习模式的Checkbox就把这些候选区座位图片保存到SD卡上,这些图片就需要人工分类后,分别放到19个文件夹中,就是最终的样本。样本越多,样本越准确,识别的结果也越准确,但是跟多的样本也会导致速度的更慢。

在273行开始,就是真正的进入识别过程了


image.png

识别过程有如下步骤

1.初始化机器学习引擎(在App启动的时候做了这件事)

这个初始化,首先是把样本图片按照设定好的参数转换成向量特征,识别过程中并不是对比的图片而是对比的特征,这一点需要牢记,如果是对比图片那就是另一种算法了。所以其实我们整理好识别的图片后保存它们的特征就好了,特征比图片占用的存储空间小很多。在机器学习的生产环境是不会把样本转换成特征的过程放到最终的程序中的,最终的程序只负责把特征加载到机器学习引擎中用于计算。我这里之所以每次都要从图片转换为特征,就是为了我方便添加样本文件到文件夹中,添加好了重启一下App就行了,再走一下初始化过程,而不需要单独处理特征文件(实际上整个过程都没有涉及到特征文件)。

2.把所有的候选区每张图都转换成特征值,轮流放到机器学习引擎中得到一个最佳的匹配

只有KNN才这么干,其他的学习算法大多数都不会这么做

3.整理结果

对于本例,需要把结果集进行整理,比如排列顺序,计算花色,确定扑克牌上的10 的位置

在297行中保存了所有的识别结果,接下来就需要整理了,整理算法如下

第一步:按照裁剪的起始位置进行排序(花色和数字分成两组),把所有的结果都进行排序,得到正确的顺序

第二步:处理扑克牌为10的结果,因为10是1和0分开的,在识别的时候是2个结果,如果排序后发现,1之后是0,就合并成一个结果为10

第三步:本例中只考虑了18中情况,也没有考虑大小王的情况,分组成2组后分别是(A,2,3,4,5,6,7,8,9,10,J,Q,K),花色组是(红桃,黑桃,方块,梅花).

第四步:判定识别结果是否成功
识别成功的条件就是识别出所有的花色和字符组合,本例中识别的是13张牌,所以必须要识别出13张牌,才算成功,由于识别光线,角度等原因,不可能每次都能识别成功,所以要用红色框引导用户对齐识别区域。这样一来能帮助对齐识别区域,二来减少计算的图片大小,提升速度。

所以:对于本例的结果是得到字符分组和花色分组都是13个元素才算成功,因为是按照起始位置排序的,当13个字符和13个花色都确定的情况下,那么两组数据都是一一对应的正确结果了。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342

推荐阅读更多精彩内容