Tensorflow学习笔记之Hello World(1)

先在这说一下我在学习Tensorflow的过程中都安装了什么?因为也走了一些弯路,希望能够引起大家注意。

因为在开始学习之前已经决定选用Python作为开发语言,所以首先就要先安装一系列和Python相关的Tool,IDE等。

Q1.Python or Python3?

A:这个问题我回答起来很心虚,因为我都不会……所以我都安装了。我在最开始学习的时候照着google的guide学习了有一小段时间,大概2-3天,也就是基本的Python2的语法看了一下,在实践操作的过程中呢,我粗浅的发现他们部分语法有些诧异,但是对于有coding经验的人来说,看代码还是不怎么费力的,写的话,反正我都要查……所以up to yourself. 都没关系。如果是0经验的,我推荐用新的Python3,原因就是长江后浪推前浪,一代更比一代强。

Python安装:https://www.python.org/downloads/

ps 由于我用的是mac,pc的安装和使用大同小异,就不细说。

Ok,安装好了之后,去terminal(命令行)就可以用python,或者python3直接进入python环境了。在这边就可以做一些简单的test了。

import tensorflow as tf

import numpy as np

# 使用 NumPy 生成假数据(phony data), 总共 100 个点.

x_data = np.float32(np.random.rand(2, 100)) # 随机输入

y_data = np.dot([0.100, 0.200], x_data) + 0.300

# 构造一个线性模型

#

b = tf.Variable(tf.zeros([1]))

W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))

y = tf.matmul(W, x_data) + b

# 最小化方差

loss = tf.reduce_mean(tf.square(y - y_data))

optimizer = tf.train.GradientDescentOptimizer(0.5)

train = optimizer.minimize(loss)

# 初始化变量

init = tf.initialize_all_variables()

# 启动图 (graph)

sess = tf.Session()

sess.run(init)

# 拟合平面

for step in xrange(0, 201):

sess.run(train)

if step % 20 == 0:

print step, sess.run(W), sess.run(b)

# 得到最佳拟合结果 W: [[0.100  0.200]], b: [0.300]

Q2:我想做个带图的demo,有什么可视化的工具可以用吗?

A:这个问题好low,我自己都觉得好low,但是由于真的是什么都不懂,什么都要现学,确实会问这个问题,至少我自己问了。

terminal就能看到图,如下例:

import numpy as np

import matplotlib.pyplot as plt

x = np.arange(9)

y = np.sin(x)

plt.plot(x,y)

plt.show()

你会得到如下的结果:


图片发自简书App


待续……

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342

推荐阅读更多精彩内容