they are determined by a finite amount of data
thanks to their modular property.
impose suitable boundary conditions to fix them.
we analyse the pole structure of the elliptic genera and reconstruct them using only their polar parts.
computed based solely
on the genus 0 Gromov-Witten invariants of the corresponding elliptic
geometry.
arXiv: 1810.01280.
有限数量的
数据得益于它们的模块化特性。
设置适当的边界条件来固定它们。
分析了椭圆类的极点结构,并对其进行了重构
只使用它们的极性部分。
高阶e弦的椭圆属
可以单独计算
on
相应椭圆几何学的属0的格罗莫夫-威滕不变量arXiv: 1810.01280。