大数据经典算法解析(1)一C4.5算法

姓名:崔升    学号:14020120005

转载自:https://www.cnblogs.com/en-heng/p/5013995.html

【嵌牛导读】:

C4.5作为一种经典的处理大数据的算法,是我们在学习互联网大数据时不得不去了解的一种常用算法

【嵌牛鼻子】:经典大数据算法之C4.5简单介绍

【嵌牛提问】:C4.5是一种怎么的算法,其决策机制靠什么实现?

【嵌牛正文】:

决策树模型:

决策树是一种通过对特征属性的分类对样本进行分类的树形结构,包括有向边与三类节点:

根节点(root node),表示第一个特征属性,只有出边没有入边;

内部节点(internal node),表示特征属性,有一条入边至少两条出边

叶子节点(leaf node),表示类别,只有一条入边没有出边。


上图给出了(二叉)决策树的示例。决策树具有以下特点:

对于二叉决策树而言,可以看作是if-then规则集合,由决策树的根节点到叶子节点对应于一条分类规则;

分类规则是互斥并且完备的,所谓互斥即每一条样本记录不会同时匹配上两条分类规则,所谓完备即每条样本记录都在决策树中都能匹配上一条规则。

分类的本质是对特征空间的划分,如下图所示,


决策树学习:

决策树学习的本质是从训练数据集中归纳出一组分类规则[2]。但随着分裂属性次序的不同,所得到的决策树也会不同。如何得到一棵决策树既对训练数据有较好的拟合,又对未知数据有很好的预测呢?

首先,我们要解决两个问题:

如何选择较优的特征属性进行分裂?每一次特征属性的分裂,相当于对训练数据集进行再划分,对应于一次决策树的生长。ID3算法定义了目标函数来进行特征选择。

什么时候应该停止分裂?有两种自然情况应该停止分裂,一是该节点对应的所有样本记录均属于同一类别,二是该节点对应的所有样本的特征属性值均相等。但除此之外,是不是还应该其他情况停止分裂呢?

2. 决策树算法

特征选择

特征选择指选择最大化所定义目标函数的特征。下面给出如下三种特征(Gender, Car Type, Customer ID)分裂的例子:


图中有两类类别(C0, C1),C0: 6是对C0类别的计数。直观上,应选择Car Type特征进行分裂,因为其类别的分布概率具有更大的倾斜程度,类别不确定程度更小。

为了衡量类别分布概率的倾斜程度,定义决策树节点tt的不纯度(impurity),其满足:不纯度越小,则类别的分布概率越倾斜;下面给出不纯度的的三种度量:


其中,p(ck|t)p(ck|t)表示对于决策树节点tt类别ckck的概率。这三种不纯度的度量是等价的,在等概率分布是达到最大值。

为了判断分裂前后节点不纯度的变化情况,目标函数定义为信息增益(information gain):


I(⋅)I(⋅)对应于决策树节点的不纯度,parentparent表示分裂前的父节点,NN表示父节点所包含的样本记录数,aiai表示父节点分裂后的某子节点,N(ai)N(ai)为其计数,nn为分裂后的子节点数。

特别地,ID3算法选取熵值作为不纯度I(⋅)I(⋅)的度量,则


cc指父节点对应所有样本记录的类别;AA表示选择的特征属性,即aiai的集合。那么,决策树学习中的信息增益ΔΔ等价于训练数据集中类与特征的互信息,表示由于得知特征AA的信息训练数据集cc不确定性减少的程度。

在特征分裂后,有些子节点的记录数可能偏少,以至于影响分类结果。为了解决这个问题,CART算法提出了只进行特征的二元分裂,即决策树是一棵二叉树;C4.5算法改进分裂目标函数,用信息增益比(information gain ratio)来选择特征:


因而,特征选择的过程等同于计算每个特征的信息增益,选择最大信息增益的特征进行分裂。此即回答前面所提出的第一个问题(选择较优特征)。ID3算法设定一阈值,当最大信息增益小于阈值时,认为没有找到有较优分类能力的特征,没有往下继续分裂的必要。根据最大表决原则,将最多计数的类别作为此叶子节点。即回答前面所提出的第二个问题(停止分裂条件)。

决策树生成:

ID3算法的核心是根据信息增益最大的准则,递归地构造决策树;算法流程如下:

如果节点满足停止分裂条件(所有记录属同一类别 or 最大信息增益小于阈值),将其置为叶子节点;

选择信息增益最大的特征进行分裂;

重复步骤1-2,直至分类完成。

C4.5算法流程与ID3相类似,只不过将信息增益改为信息增益比

3. 决策树剪枝

过拟合

生成的决策树对训练数据会有很好的分类效果,却可能对未知数据的预测不准确,即决策树模型发生过拟合(overfitting)——训练误差(training error)很小、泛化误差(generalization error,亦可看作为test error)较大。下图给出训练误差、测试误差(test error)随决策树节点数的变化情况:


可以观察到,当节点数较小时,训练误差与测试误差均较大,即发生了欠拟合(underfitting)。当节点数较大时,训练误差较小,测试误差却很大,即发生了过拟合。只有当节点数适中是,训练误差居中,测试误差较小;对训练数据有较好的拟合,同时对未知数据有很好的分类准确率。

发生过拟合的根本原因是分类模型过于复杂,可能的原因如下:

训练数据集中有噪音样本点,对训练数据拟合的同时也对噪音进行拟合,从而影响了分类的效果;

决策树的叶子节点中缺乏有分类价值的样本记录,也就是说此叶子节点应被剪掉。

剪枝策略

为了解决过拟合,C4.5通过剪枝以减少模型的复杂度。[2]中提出一种简单剪枝策略,通过极小化决策树的整体损失函数(loss function)或代价函数(cost function)来实现,决策树TT的损失函数为:


其中,C(T)C(T)表示决策树的训练误差,αα为调节参数,|T||T|为模型的复杂度。当模型越复杂时,训练的误差就越小。上述定义的损失正好做了两者之间的权衡。

如果剪枝后损失函数减少了,即说明这是有效剪枝。具体剪枝算法可以由动态规划等来实现。

4. 参考资料

[1] Pang-Ning Tan, Michael Steinbach, Vipin Kumar,Introduction to Data Mining.

[2] 李航,《统计学习方法》.

[3] Naren Ramakrishnan, The Top Ten Algorithms in Data Mining.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342

推荐阅读更多精彩内容