一、 画一个金字塔
!!!这一部分主要是画金字塔的代码解析部分,对此已经熟练掌握的朋友可以直接跳过。
首先附上简单整理的一张包含setupRC、changeSize、RenderScene一般情况下分别处理的代码逻辑的简图,这里有必要说明的是,图里的逻辑只是一般情况下可以这么做,但并非一成不变。
1、 引入的库
#include "GLTools.h"
#include "GLMatrixStack.h"
#include "GLFrame.h"
#include "GLFrustum.h"
#include "GLGeometryTransform.h"
#include <math.h>
#ifdef __APPLE__
#include <glut/glut.h>
#else
#define FREEGLUT_STATIC
#include <GL/glut.h>
#endif
2、用到的变量
// 着色器管理类
GLShaderManager shaderManager;
//模型视图矩阵堆栈
GLMatrixStack modelViewMatrix;
//投影矩阵堆栈
GLMatrixStack projectionMatrix;
//照相机 参考帧
GLFrame cameraFrame;
//模型 参考帧
GLFrame objectFrame;
//投影矩阵
GLFrustum viewFrustum;
//容器类 对应GL_TRIANGLES 图元类型
GLBatch triangleBatch;
//几何变换的管道
GLGeometryTransform transformPipeline;
GLfloat vGreen[] = { 0.0f, 1.0f, 0.0f, 1.0f };
GLfloat vBlack[] = { 0.0f, 0.0f, 0.0f, 1.0f };
// 跟踪效果步骤
int nStep = 0;
3、SetupRC中的逻辑
SetupRC 是在main方法中手动调用,且只执行一次,主要是做着色器初始化、窗口背景初始化、顶点数据的准备等工作,在这个案例中,此方法主要是初始化了绘制金字塔需要的顶点数据。
void SetupRC()
{
// 灰色的背景
glClearColor(0.7f, 0.7f, 0.7f, 1.0f );
//初始化着色器
shaderManager.InitializeStockShaders();
//将相机向前移动15个单元
cameraFrame.MoveForward(-15.0f);
/*
常见函数:
void GLBatch::Begin(GLenum primitive,GLuint nVerts,GLuint nTextureUnits = 0);
参数1:表示使用的图元
参数2:顶点数
参数3:纹理坐标(可选)
//负责顶点坐标
void GLBatch::CopyVertexData3f(GLFloat *vNorms);
//结束,表示已经完成数据复制工作
void GLBatch::End(void);
*/
// 通过三角形创建金字塔
GLfloat vPyramid[12][3] = {
-2.0f, 0.0f, -2.0f,
2.0f, 0.0f, -2.0f,
0.0f, 4.0f, 0.0f,
2.0f, 0.0f, -2.0f,
2.0f, 0.0f, 2.0f,
0.0f, 4.0f, 0.0f,
2.0f, 0.0f, 2.0f,
-2.0f, 0.0f, 2.0f,
0.0f, 4.0f, 0.0f,
-2.0f, 0.0f, 2.0f,
-2.0f, 0.0f, -2.0f,
0.0f, 4.0f, 0.0f
};
//GL_TRIANGLES 每3个顶点定义一个新的三角形
triangleBatch.Begin(GL_TRIANGLES, 12);
triangleBatch.CopyVertexData3f(vPyramid);
triangleBatch.End();
}
4、ChangeSize中的逻辑
ChangeSize为重塑方法,当第一次创建窗口或者窗口改变时候系统调用,主要在该方法中使用窗口维度设置视口和投影矩阵。
void ChangeSize(int w, int h)
{
glViewport(0, 0, w, h);
//创建投影矩阵,并将它载入投影矩阵堆栈中
viewFrustum.SetPerspective(35.0f, float(w) / float(h), 1.0f, 500.0f);
将投影矩阵载入投影堆栈
projectionMatrix.LoadMatrix(viewFrustum.GetProjectionMatrix());
//将单元矩阵载入模型视图矩阵堆栈
modelViewMatrix.LoadIdentity();
//设置变换管线以使用两个矩阵堆栈
transformPipeline.SetMatrixStacks(modelViewMatrix, projectionMatrix);
}
5、RenderScene中的逻辑
RenderScene同ChangeSize一样,需要在main函数里注册通知,当屏幕发生变化或者通过调用glutPostRedisplay方法,从而让系统调用。
在此方法中,主要通过模型视图堆栈,做了一系列的矩阵计算,从而得到一个新的模型视图堆栈。最后通过渲染管线获取到模型视图矩阵以及投影矩阵,作为固定着色器中几何图形变换的变换矩阵。
void RenderScene(void)
{
// Clear the window with current clearing color
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
//压栈
modelViewMatrix.PushMatrix();
M3DMatrix44f mCamera;
cameraFrame.GetCameraMatrix(mCamera);
//矩阵乘以矩阵堆栈的顶部矩阵,相乘的结果随后简存储在堆栈的顶部
modelViewMatrix.MultMatrix(mCamera);
M3DMatrix44f mObjectFrame;
//只要使用 GetMatrix 函数就可以获取矩阵堆栈顶部的值,这个函数可以进行2次重载。用来使用GLShaderManager 的使用。或者是获取顶部矩阵的顶点副本数据
objectFrame.GetMatrix(mObjectFrame);
//矩阵乘以矩阵堆栈的顶部矩阵,相乘的结果随后简存储在堆栈的顶部
modelViewMatrix.MultMatrix(mObjectFrame);
/* GLShaderManager 中的Uniform 值——平面着色器
参数1:平面着色器
参数2:运行为几何图形变换指定一个 4 * 4变换矩阵
--transformPipeline.GetModelViewProjectionMatrix() 获取的
GetMatrix函数就可以获得矩阵堆栈顶部的值
参数3:颜色值(黑色)
*/
shaderManager.UseStockShader(GLT_SHADER_FLAT, transformPipeline.GetModelViewProjectionMatrix(), vBlack);
DrawWireFramedBatch(&triangleBatch);
//还原到以前的模型视图矩阵(单位矩阵)
modelViewMatrix.PopMatrix();
// 进行缓冲区交换
glutSwapBuffers();
}
//方法主要实现金字塔的黑色边缘
void DrawWireFramedBatch(GLBatch* pBatch)
{
/*------------画绿色部分----------------*/
/* GLShaderManager 中的Uniform 值——平面着色器
参数1:平面着色器
参数2:运行为几何图形变换指定一个 4 * 4变换矩阵
--transformPipeline 变换管线(指定了2个矩阵堆栈)
参数3:颜色值
*/
shaderManager.UseStockShader(GLT_SHADER_FLAT, transformPipeline.GetModelViewProjectionMatrix(), vGreen);
pBatch->Draw();
/*-----------边框部分-------------------*/
/*
glEnable(GLenum mode); 用于启用各种功能。功能由参数决定
参数列表:http://blog.csdn.net/augusdi/article/details/23747081
注意:glEnable() 不能写在glBegin() 和 glEnd()中间
GL_POLYGON_OFFSET_LINE 根据函数glPolygonOffset的设置,启用线的深度偏移
GL_LINE_SMOOTH 执行后,过虑线点的锯齿
GL_BLEND 启用颜色混合。例如实现半透明效果
GL_DEPTH_TEST 启用深度测试 根据坐标的远近自动隐藏被遮住的图形(材料
glDisable(GLenum mode); 用于关闭指定的功能 功能由参数决定
*/
//画黑色边框
glPolygonOffset(-1.0f, -1.0f);// 偏移深度,在同一位置要绘制填充和边线,会产生z冲突,所以要偏移
glEnable(GL_POLYGON_OFFSET_LINE);
// 画反锯齿,让黑边好看些
glEnable(GL_LINE_SMOOTH);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
//绘制线框几何黑色版 三种模式,实心,边框,点,可以作用在正面,背面,或者两面
//通过调用glPolygonMode将多边形正面或者背面设为线框模式,实现线框渲染
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
//设置线条宽度
glLineWidth(2.5f);
/* GLShaderManager 中的Uniform 值——平面着色器
参数1:平面着色器
参数2:运行为几何图形变换指定一个 4 * 4变换矩阵
--transformPipeline.GetModelViewProjectionMatrix() 获取的
GetMatrix函数就可以获得矩阵堆栈顶部的值
参数3:颜色值(黑色)
*/
shaderManager.UseStockShader(GLT_SHADER_FLAT, transformPipeline.GetModelViewProjectionMatrix(), vBlack);
pBatch->Draw();
// 复原原本的设置
//通过调用glPolygonMode将多边形正面或者背面设为全部填充模式
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
glDisable(GL_POLYGON_OFFSET_LINE);
glLineWidth(1.0f);
glDisable(GL_BLEND);
glDisable(GL_LINE_SMOOTH);
}
至此,一个金字塔就画完了,效果如下图。
二、矩阵堆栈
在上述的RenderScene()方法中,有着modelViewMatrix.PushMatrix()、modelViewMatrix.PopMatrix()这样的代码存在,这就是压栈与出栈。
下面附上矩阵压栈出栈的释义图。
1、PushMatrix()
压栈: 和数据结构中的栈类似,调用这个方法的时候,若传入一个矩阵,则将该矩阵压入栈顶;若不传入参数,则默认copy一份当前栈顶矩阵,压入栈顶,主要作用就是记录状态,保存当时的临时结果。
2、MultMatrix(x)
矩阵相乘:将栈顶元素copy一份,并与x矩阵相乘,得到的结果赋值给矩阵堆栈的栈顶矩阵。
3、PopMatrix()
矩阵出栈:将栈顶矩阵出栈,恢复为原始的矩阵堆栈。
在使用完该栈之后,这个方法必须调用。原因就是,之前有提到,OpenGL上下文本身就是一个巨大的状态机,若在这里不将栈顶矩阵出栈,对于在其他使用到该矩阵堆栈的地方来说,矩阵数据就会错乱。