[语录]tips


大数据:“人工特征工程+线性模型”的尽头 | 36大数据
http://www.36dsj.com/archives/15621
由此可以看出,特征工程建立在不断的深入理解问题和获取额外的数据源上。但问题是,通常根据数据人能抽象出来的特征总类很有限。例如,广告点击预测,这个被广告投放公司做得最透彻的问题,目前能抽象出来的特征完全可以写在一张幻灯片里。好理解的、方便拿来用的、干净的数据源也不会很多,对于广告无外乎是广告本身信息(标题、正文、样式),广告主信息(行业、地理位置、声望),和用户信息(性别、年龄、收入等个人信息,cookie、session等点击信息)。KDDCUP2013腾讯提供了广告点击预测的数据,就包含了其中很多。所以最终能得到的特征类数上限也就是数百。另外一个例子是,google使用的数据集里每个样本含有的特征数平均不超过100,可以推断他们的特征类数最多也只是数百。


三种技术的融合 - taowen - SegmentFault
https://segmentfault.com/a/1190000002967413
融合
这三个技术各自有独自看重的内在实现方式

  • 搜索引擎:重点是inverted index,索引的压缩存储和高效检索
  • 分析数据库:重点是column oriented storage,利用列式存储快速地在查询时暴力扫描
  • 分布式计算引擎:从一开始就是map reduce,关注的是分区和分布式执行

实际上三家是从不同的角度切入了同一个问题。不过这已经不是一招鲜的时代了。一个好的搜索引擎需要inverted index/column oriented storage/map reduce,三者都要。一个好的OLAP也是inverted index/column oriented storage/map reduce三个都要的。


广告点击率预测 [离线部分] - quweiprotoss的日志 - 网易博客
http://quweiprotoss.blog.163.com/blog/static/4088288320144810567471?utm_source=tuicool&utm_medium=referral
有时候和别人交流的时候说LR模型是线性模型,别人很疑惑的说sigmoid函数明显不是线性函数呀?我给一下图就明白了,图中的decision boundary是一条直线。为什么是直线?因为weight向量和特征向量x线性关系。

广告点击率预测 [离线部分] - quweiprotoss的日志 - 网易博客
http://quweiprotoss.blog.163.com/blog/static/4088288320144810567471?utm_source=tuicool&utm_medium=referral
Norm和Binarize是对数据进行一定的变换,这是由我们将要使用的Logistic Regression算法决定的,其实很多算法都逃不了这两步的,所以不用担心会做无用功。

广告点击率预测 [离线部分] - quweiprotoss的日志 - 网易博客
http://quweiprotoss.blog.163.com/blog/static/4088288320144810567471?utm_source=tuicool&utm_medium=referral

Andrew Ng(吴恩达)
说过:你应该最短的时候,比如一天的时候,完全一个粗糙的版本,看它有什么问题,再去解决。不要担心太粗糙太快速。


广告的本质只是在变现流量 - 今日头条(TouTiao.org)
http://www.toutiao.com/i6312222135427269121/

本文为IT桔子·阿里云系列沙龙第1期:多屏数据时代,数字营销的现状及发展趋势主题沙龙中,TUNA创始人徐慎的现场分享内容,略有删减。


HBase高性能复杂条件查询引擎 - 远方的专栏 - 博客频道 - CSDN.NET
http://blog.csdn.net/u014774781/article/details/52397120
——索引的实质是另一种编排形式的数据冗余,高效的检索源自于面向查询特别设计的编排形式,如果再辅以分布式的计算框架,就可以支撑起高性能的大数据查询


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343

推荐阅读更多精彩内容