以太坊源码分析--p2p节点发现

p2p(peer to peer)负责以太坊节点间的通信,主要包括底层节点发现(discover)和上层协议运行两大块,本文主要描述其中节点发现部分的实现

数据结构

节点发现功能主要涉及 Server \ Table \ udp 这几个数据结构,它们有独自的事件响应循环,节点发现功能便是它们互相协作完成的。其中,每个以太坊客户端启动后都会在本地运行一个Server,并将网络拓扑中相邻的节点视为Node,而TableNode的容器,udp则是负责维持底层的连接。下面重点描述它们中重要的字段和事件循环处理的关键部分。

Server

p2p/server.go
type Server struct {
    PrivateKey  *ecdsa.PrivateKey
    Protocols    []protocol
    StaticNodes[]  *discover.Node
    newTransport  func(net.Conn)  transport  
    ntab    disvocerTable    
    ourHandshake    *protoHandshake    

    addpeer    chan *conn
    ......
}

PrivateKey - 本节点的私钥,用于与其他节点建立时的握手协商
Protocols - 支持的所有上层协议
StaticNodes - 预设的静态Peer,节点启动时会首先去向它们发起连接,建立邻居关系
newTransport - 下层传输层实现,定义握手过程中的数据加密解密方式,默认的传输层实现是用newRLPX()创建的rlpx,这不是本文的重点
ntab - 典型实现是Table,所有peerNode的形式存放在Table
ourHandshake - 与其他节点建立连接时的握手信息,包含本地节点的版本号以及支持的上层协议
addpeer - 连接握手完成后,连接过程通过这个通道通知Server

Server.listenLoop()

Server的监听循环,启动底层监听socket,当收到连接请求时,Accept后调用setupConn()开始连接建立过程

Server.run()

Server的主要事件处理和功能实现循环

  • 进行主动的节点发现,详见之后的节点发现部分
  • posthandshake channel 接收已经完成第一阶段的连接,这些连接的身份已经被确认,但还需要验证
  • addpeer channel 接收已经完成第二阶段的连接,这些连接已经验证,调用runPeer()运行本节点与Peer连接上的协议,详见[TODO]p2p协议运行

Node

Node唯一表示网络上的一个节点

p2p/discover/node.go
type Node struct {
    IP net.IP
    UDP, TCP uint16
    ID      NodeID
    sha    common.Hash
}

IP - IP地址
UDP/TCP - 连接使用的UDP/TCP端口号
ID - 以太坊网络中唯一标识一个节点,本质上是一个椭圆曲线公钥(PublicKey),与ServerPrivateKey对应。一个节点的IP地址不一定是固定的,但ID是唯一的。
sha - 用于节点间的距离计算


Table

Table主要用来管理与本节点与其他节点的连接的建立\更新\删除

p2p/discover/table.go
type Table struct {
    bucket   [nBuckets]* bucket
    refreshReq    chan chan struct{}
    ......
}

bucket - 所有peer按与本节点的距离远近放在不同的桶(bucket)中,详见之后的节点维护
refreshReq - 更新Table请求通道

Table.loop()

Table的主要事件循环,主要负责控制refreshrevalidate过程。
refresh.C - 定时(30s)启动Peer刷新过程的定时器
refreshReq - 接收其他线程投递到Table刷新Peer连接的通知,当收到该通知时启动更新,详见之后的更新邻居关系
revalidate.C - 定时重新检查以连接节点的有效性的定时器,详见之后的探活检测

udp

udp负责节点间通信的底层消息控制,是Table运行的Kademlia协议的底层组件

type udp struct {
    conn  conn
    addpending chan *pending
    gotreply  chan reply
    *Table
}

conn - 底层监听端口的连接
addpendingudp用来接收pending的channel。使用场景为:当我们向其他节点发送数据包后(packet)后可能会期待收到它的回复,pending用来记录一次这种还没有到来的回复。举个例子,当我们发送ping包时,总是期待对方回复pong包。这时就可以将构造一个pending结构,其中包含期待接收的pong包的信息以及对应的callback函数,将这个pengding投递到udp的这个channel。udp在收到匹配的pong后,执行预设的callback。
gotreply - udp用来接收其他节点回复的通道,配合上面的addpending,收到回复后,遍历已有的pending链表,看是否有匹配的pending。
Table - 和Server中的ntab是同一个Table

udp.loop()

udp的处理循环,负责控制消息的向上递交和收发控制

  • addpending 接收其他线程投递来的pending需求
  • gotreply 接收udp.readLoop()投递过来的pending的回复
udp.readLoop()

udp的底层接受数据包循环,负责接收其他节点的packet

  • 接受其他节点发送的packet并解析,如果是回复包则投递到udp.loop()

节点维护

以太坊使用Kademlia分布式路由存储协议来进行网络拓扑维护,了解该协议建议先阅读易懂分布式。更权威的资料可以查看wiki。总的来说该协议:

  • 使用UDP进行节点间消息通信,有 4 种消息
    • ping - 用于探测其他节点是否还存在
    • store - 接收者受到后,将信息中key/value对存储在本节点
    • findnode - 接受者向发送者返回 k 个它知道的与目标结点距离最近的节点
    • findvalue - 和findnode 差不多,区别是如果接收者本地存在与目标结点对应的value,那么就回复这个值给发送者。
  • 每个节点根据与邻居节点距离之间的距离(NodeID的差距),分别放到不同的桶(bucket)中。

本文说的距离,均是指两个节点NodeID的距离,计算方式可见p2p/discover/node.gologdist()方法

源码中由Table结构保存所有bucketbucket结构如下

p2p/discover/table.go
type bucket struct {
    entries  []*Node
    replacemenets   []*Node
    ips  netutil.DistinctNetSet
}
  • entries 数组中保存经过bond的节点,并且其顺序是越新bond通过了探活检测(Revalidate)的节点位置越靠前。
  • replacemenets数组中保存候补节点,如果entries 数组数量满了,之后的节点会被加入该数组

节点可以在entriesreplacements互相转化,一个entries节点如果Validate失败,那么它会被原本将一个原本在replacements数组的节点替换。

探活检测(Revalidate)

有效性检测就是利用ping消息进行探活操作。Table.loop()启动了一个定时器(0~10s),定期随机选择一个bucket,向其entries中末尾的节点发送ping消息,如果对方回应了pong,则探活成功。

举个栗子,假设某个bucket, entries最多保存2个节点,replacements最多保存4个节点。初始情况下entries=[A, B], replacements = [C, D, E],如果此时节点F加入网络,bond通过,由于entries已满,只能加入到replacements = [C, D, E, F]。 此时Revalidate定时器到期,则会对 B进行检测,如果通过,则entries=[B, A],如果不通过,则将随机选择replacements中的一项(假设为D)替换B的位置,最终entries=[A, D],replacements = [C, E, F]

更新邻居关系

Table.loop()会定期(定时器超时)或不定期(收到refreshReq)地进行更新邻居关系(发现新邻居),两者都调用doRefresh()方法,该方法对在网络上查找离自身和三个随机节点最近的若干个节点。

节点查找

Tablelookup()方法用来实现节点查找目标节点,它的实现就是Kademlia协议,通过节点间的接力,一步一步接近目标。

邻居初始化

当一个节点启动后,它会首先向配置的静态节点发起连接,发起连接的过程称为Dial,源码中通过创建dialTask跟踪这个过程

dialTask

dialTask表示一次向其他节点主动发起连接的任务

p2p/dial.go
type dialTask struct {
    flags    connFlag
    dest    *discover.Node
    ......
}

Server启动时,会调用newDialState()根据预配置的StaticNodes初始化一批dialTask, 并在Server.run()方法中,启动这些这些任务。

diatask (1).png

Dial过程需要知道目标节点(dest)的IP地址,如果不知道的话,就要先使用 recolve()解析出目标的IP地址,怎么解析?就是先要用借助Kademlia协议在网络中查找目标节点。

resolve (1).png

当得到目标节点的IP后,下一步便是建立连接,这是通过dialTask.dial()建立连接

连接建立

连接建立的握手过程分为两个阶段,在在SetupConn()中实现
第一阶段为ECDH密钥建立

enchand.png

第二阶段为协议握手,互相交换支持的上层协议

dial-receive.png

如果两次握手都通过,dialTask将向Serveraddpeer通道发送peer的信息

serverrun-dial-remote.png

总结

  • p2p节点发现(discover)负责管理以太坊网络中各个节点间的连接建立,更新和删除,Server是p2p功能的入口,Table负责记录peer节点信息, udp负责底层通信
  • 以太坊使用Kademlia分布式路由存储协议来进行网络拓扑维护,将不同距离的peer节点放在不同的bucket中。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343

推荐阅读更多精彩内容