Tensorflow: exporting model for serving

Few days ago, I wrote about how to retrieving signature of an exported model from Tensorflow, today i want to continue with how to export a model for serving. Particularly, exporting a model and serve it with TFServing. TFServing is a high performance tensorflow serving service written in C++. I am working on building a serving infrastructure, so i have to spend a lot of time on exporting tensorflow model and make it servable via TFServing.
The requirement for an exported model to be servable by TFServing is quite simple: you need to define inputsand outputs named signatures. The inputs signature will define the shape of the input tensor of the graph, and the outputs signature will define the output tensor of the prediction.
Exporting from a tensorflow graphThis is straight forward. If you build the graph yourself, you will have the inputs and outputs tensor. You will just need to create a Saver and an Exporter, then call with the right arguments.

saver = tf.train.Saver(sharded=True)
model_exporter = exporter.Exporter(saver)
model_exporter.init(
sess.graph.as_graph_def(),
named_graph_signatures={
'inputs': exporter.generic_signature({'images': x}),
'outputs': exporter.generic_signature({'scores': y})})
model_version_path = model_exporter.export('/tmp/mnist_exported_model', tf.constant(FLAGS.export_version), sess)

Please see here for a complete example.
Exporting from a tf.contrib.learn EstimatorThis is actually more tricky. Even the estimator providesexport() API but the documentation is not helpful, and by default it won’t export a named signature so you can not use it directly. Instead, you will need to:
Define a input_fn
to return the shape of the input. You can reuse your input_fn for data feeding if you have already did that during training.
Define a signature_fn
as below
Make sure you pass input_feature_key
anduse_deprecated_input_fn=False
when you call the export function.

Below is an example of exporting the classifier from thistutorial. Note: this is only for tensorflow 0.11. For 0.12 and 1.0 the api may be different.

from tensorflow.contrib.learn.python.learn.utils import export
from tensorflow.contrib.session_bundle import exporter

def my_input_fn():
# Here you define the shape of input tensors, it needs to match with the
# shape of the feature you feed into the estimator
return {
"": tf.placeholder(tf.float32, shape=[None, 4])
}, None

def my_signature_fn(examples,features,predictions):
return None,{
"inputs": exporter.generic_signature({"features": examples}),
"outputs": exporter.generic_signature({"score": predictions})
}

model_version_path = classifier.export(
"/tmp/iris_exported_model",
input_fn=my_input_fn,
input_feature_key="",
use_deprecated_input_fn=False,
signature_fn=my_signature_fn
)

Some explanation: in the input_fn
you defined the features of your estimator, it will return a dict of tensors to represents your data. Usually this will return a tuple of features tensors and labels tensor, but for exporting you can skip the label tensor. You can refer to here for detail documentation. The above input_fn
returns a feature tensor with feature name is empty string (“”). That’s why we also need to add input_feature_key=""
to the export function.
Once the model is exported, you can just ship it to TF Serving and start serving it. I will continue with this series next few days on how to run the serving service and sending requests into it.

原文: Tensorflow: exporting model for serving | Bao's Blog

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342

推荐阅读更多精彩内容

  • 人们常说生活就是一场旅行,在这场旅途中,我们沿途通过对客观世界的认识,观察和思考,来不断提升我们的认知,我们再通过...
    凡提阅读 441评论 0 3
  • 有两个要饭花子其中一个残疾他们都在京城乞讨,他们互不相识,残疾只在一个地方要饭,矮个子的寻街要饭,到处走走看看,敲...
    Mr白菜阅读 236评论 0 0
  • 阿朱,我以为写你是再轻松不过的事情。可是,当我起笔时,满满的回忆涌上心头,笔下却无言.....我就静静地坐在这里,...
    cola的春天阅读 430评论 0 0
  • 转载自http://blog.coderclock.com/2016/05/22/android/你需要知道的An...
    mark2Li阅读 728评论 0 4