Apache RocketMQ 基础概念及架构解析

1.png

Apache RocketMQ 基础概念及架构解析

Apache RocketMQ 系列:

Apache RocketMQ之JMS基本概念及使用:https://www.jianshu.com/p/d2e3fd77c4f4
Apache RocketMQ 基础概念及架构解析:https://www.jianshu.com/p/95ab928960b3
Apache RocketMQ 的基础特性介绍:https://www.jianshu.com/p/570680b32590
Apache RocketMQ 集群搭建(两主两从):https://www.jianshu.com/p/b090138cf52c
Apache RocketMQ 刷盘策略与复制策略: https://www.jianshu.com/p/d66b381428bb

优秀博客:
https://blog.csdn.net/BtB5e6Nsu1g511Eg5XEg/article/details/83828893
https://blog.csdn.net/GV7lZB0y87u7C/article/details/78382605
https://blog.csdn.net/qq_34021712/article/details/78169014
https://blog.csdn.net/babyupup/article/details/72642571
https://www.jianshu.com/p/f90b0f175e2d


本文主要介绍:

一、RocketMQ起源

二、RocketMQ的概念模型

三、RocketMQ的存储模型

四、RocketMQ的部署模型

五、RocketMQ最佳实践总结 (后面介绍)


一、RocketMQ的起源

通常,每个产品的诞生都源于一个具体的需求或问题,RocketMQ也不例外。起初,产品的原型像一个巨石,把所有需要实现的程序和接口都罗列到一起。但随着公司业务的发展,所有的系统和功能都在这个巨石上开发,当覆盖几百上千名开发人员的时候,瓶颈就出来了。这时候,就需要我们把系统进行分解。

1.png

分解后,就出现了上图中的分布式架构,这类架构最大的特点就是解耦,而RocketMQ的异步解耦意味着底层的重构不会影响到上层应用的功能。RocketMQ另一个优势是削峰填谷,在面临流量的不确定性时,实现对流量的缓冲处理。此外,RocketMQ的顺序设计特性使得RocketMQ成为一个天然的排队引擎,例如,三个应用同时对一个后台引擎发起请求,排队引擎的特性可以确保不会引起“撞车”事故。

总结:RocketMQ的作用(消息中间件):解耦、削峰填谷、高并发,或者说:异步消息处理、高性能(高并发读写)、高可用(主备)、可伸缩(削峰填谷)、最终一致性。

补充:

在2007年的时候,淘宝实施了“五彩石”项目,“五彩石”用于将交易系统从单机变成分布式,也是在这个过程中产生了阿里巴巴第一代消息引擎——Notify。

在2010年的时候,阿里巴巴B2B部门基于ActiveMQ的5.1版本也开发了自己的一款消息引擎,称为Napoli,这款消息引擎在B2B里面广泛地被使用,不仅仅是在交易领域,在很多的后台异步解耦等方面也得到了广泛的应用。

在2011年的时候,业界出现了现在被很多大数据领域所推崇的Kafka消息引擎,阿里巴巴在研究了Kafka的整体机制和架构设计之后,基于Kafka的设计使用Java进行了完全重写并推出了MetaQ 1.0版本,主要是用于解决顺序消息和海量堆积的问题。

在2012年,阿里巴巴对于MetaQ进行了架构重组升级,开发出了MetaQ 2.0,这时就发现MetaQ原本基于Kafka的架构在阿里巴巴如此庞大的体系下很难进行水平扩展,所以在2012年的时候就开发了RocketMQ 3.0版本。很多人会问到RocketMQ 3.0和MetaQ 3.0的区别,其实这两者是等价的版本,只不过阿里内部使用的称为MetaQ 3.0,外部开源称之为RocketMQ 3.0。

在2015年,又基于RocketMQ开发了阿里云上的Aliware MQ和Notify 3.0。

在2016年的时候,阿里巴巴将RocketMQ的内核引擎捐赠给了Apache基金会。

以上就是RocketMQ的整体发展历史,其实在阿里巴巴内部围绕着RocketMQ内核打造了三款产品,分别是MetaQ、Notify和Aliware MQ。这三者分别采用了不同的模型,MetaQ主要使用了拉模型,解决了顺序消息和海量堆积问题;Notify主要使用了推模型,解决了事务消息;而云产品Aliware MQ则是提供了商业化的版本。


二、RocketMQ的概念模型

对于任何一款中间件产品而言,清晰的概念模型是帮助开发者正确理解使用它的关键。从RocketMQ的概念模型来看:Topic是用于存储逻辑的地址的,Producer是信息的发送,Consumer是信息的接收者。

2.png

这只是一个基础的概念模型,在实际的生产中,结构会更复杂,例如我们需要对中间的Topic进行分区,出现多个有关联的Topic,再如同一个信息的发送方会有多个订阅者,同一个需求方会有多个发送方,出现一对多、多对一的情况。

3.png

上图就是对Topic、Producer、Consumer扩展后的概念模型。RocketMQ中可以接触到的所有概念都可以在这个概念模型图中找到。

左边有两个Producer,中间就是两个分布式的Topic,用于存储逻辑地址的两个Topic中分别有两个用于存储物理存储地址的Message Queue,Broker是实际部署过程的对应的一台设备,右边则是两个Consumer,Consumer Group是代表两个Consumer可共享相互之间的订阅。不同的Consumer Group相互独立。

一句话总结就是不同的Group是广播订阅的,同一个Group则是负载订阅的。图中的连线表示各模块之间的关系,例如Consumer Group A中的Consumer1对应着Message Queue0和Message Queue1的两个队列,分布在BrokerA这一台设备上。

补充:

Producer Group:
用来表示一个収送消息应用,一个 Producer Group 下包含多个 Producer 实例,可以是多台机器,也可以 是一台机器的多个迕程,戒者一个迕程的多个 Producer 对象。一个 Producer Group 可以収送多个 Topic 消息,Producer Group 作用如下:

  1. 标识一类 Producer
  2. 可以通过运维工具查询返个収送消息应用下有多个 Producer 实例
  3. 収送分布式事务消息时,如果 Producer 中途意外宕机,Broker 会主劢回调 Producer Group 内的任意一台机器来确讣事务状态

Consumer Group:
用来表示一个消费消息应用,一个 Consumer Group 下包含多个 Consumer 实例,可以是多台机器,也可
以是多个迕程,戒者是一个迕程的多个 Consumer 对象。一个 Consumer Group 下的多个 Consumer 以均摊
方式消费消息,如果设置为广播方式,那举返个 Consumer Group 下的每个实例都消费全量数据。

Topoic:消息的逻辑管理单位。

Message Queue:消息的物理管理单位。一个Topic下可以有多个Queue,Queue的引入使得消息存储可以分布式集群化,具有了水平扩展的能力。

顺序消息:用户实现MessageQueueSelector为某一批消息(通常是有同样的唯一的标示ID),选择同一个Queue,则这一批消息的消费将是顺序消费(并由同一个consumer完成消费)。

事务消息:这样的消息有多个状态,并且其发送是两阶段的。第一个阶段发送PREPARED状态的消息,此时consumer是看不见这种状态的消息的,发送完毕后回调用户的TransactionExecutor接口,执行相应的事务操作(如数据库),当事务操作成功时,则对此条消息返回commit,让broker对该消息执行commit操作,成为commit状态的消息对consumer是可见的。


三、RocketMQ的存储模

RocketMQ的消息的存储是由ConsumeQueue和CommitLog 配合来完成的,ConsumeQueue中只存储很少的数据,消息主体都是通过CommitLog来进行读写。

4.png
CommitLog:

是消息主体以及元数据的存储主体,对CommitLog建立一个ConsumeQueue,每个ConsumeQueue对应一个(概念模型中的)MessageQueue,所以只要有Commit Log在,Consume Queue即使数据丢失,仍然可以恢复出来。

Consume Queue:

是一个消息的逻辑队列,存储了这个Queue在CommitLog中的起始offset,log大小和MessageTag的hashCode。每个Topic下的每个Queue都有一个对应的ConsumerQueue文件,例如Topic中有三个队列,每个队列中的消息索引都会有一个编号,编号从0开始,往上递增。并由此一个位点offset的概念,有了这个概念,就可以对Consumer端的消费情况进行队列定义。

补充:

RocketMQ的broker端,不负责推送消息,无论消费者是否消费消息,都将消息存储起来。谁要消费消息,就向broker发请求获取消息,消费记录由consumer来维护。RocketMQ提供了两种存储方式来保留消费记录:一种是保留在consumer所在的服务器上;另一种是保存在broker服务器上。用户还可以自己实现相应的消费进度存储接口。

默认情况下,采用集群消费(CLUSTERING),会将记录保存在broker端;而采用广播消费(BROADCASTING)则会将消费记录保存在本地。

RocketMQ以Topic来管理不同应用的消息。对于生产者而言,发送消息是,需要指定消息的Topic,对于消费者而言,在启动后,需要订阅相应的Topic,然后可以消费相应的消息。Topic是逻辑上的概念,在物理实现上,一个Topic由多个Queue组成,采用多个Queue的好处是可以将Broker存储分布式化,提高系统性能。

RocketMQ中,producer将消息发送给Broker时,需要制定发送到哪一个队列中,默认情况下,producer会轮询的将消息发送到每个队列中(所有broker下的Queue合并成一个List去轮询)。

对于consumer而言,会为每个consumer分配固定的队列(如果队列总数没有发生变化),consumer从固定的队列中去拉取没有消费的消息进行处理。

RocketMQ 存储特点:

零拷贝原理:Consumer 消费消息过程,使用了零拷贝,零拷贝包含以下两种方式:

  1. 使用 mmap + write 方式

优点:即使频繁调用,使用小块文件传输,效率也很高

缺点:不能很好的利用 DMA 方式,会比 sendfile 多消耗CPU,内存安全性控制复杂,需要避免 JVM Crash 问题。

  1. 使用 sendfile 方式

优点:可以利用 DMA 方式,消耗 CPU 较少,大块文件传输效率高,无内存安全新问题。

缺点:小块文件效率低亍 mmap 方式,只能是 BIO 方式传输,不能使用 NIO。

RocketMQ 选择了第一种方式,mmap+write 方式,因为有小块数据传输的需求,效果会比 sendfile 更好。

RocketMQ 文件系统:

RocketMQ 选择 Linux Ext4 文件系统。

原因如下:
Ext4 文件系统删除 1G 大小的文件通常耗时小亍 50ms,而 Ext3 文件系统耗时约 1s 左右,且删除文件时,磁盘 IO 压力极大,会导致 IO 写入超时。

文件系统局面需要做以下调优措施: 文件系统 IO 调度算法需要调整为 deadline,因为 deadline 算法在随机读情况下,可以合幵读请求为顺序跳跃
方式,从而提高读 IO 吞吐量。

RocketMQ 数据存储结构:
5.png
RocketMQ 存储目录结构
|-- abort 
|-- checkpoint 
|-- config
| |-- consumerOffset.json
| |-- consumerOffset.json.bak
| |-- delayOffset.json
| |-- delayOffset.json.bak
| |-- subscriptionGroup.json.bak
| |-- topics.json
| |-- topics.json.bak 
|-- commitlog
| |-- 00000003384434229248
| |-- 000000033855079710
| |-- 0000000338658171289
|-- consumequeue
  |-- %DLQ%ConsumerGroupA
  | |-- 0
  | | |-- 00000000000006000000
  |-- %RETRY%ConsumerGroupA
  | |-- 0
  | | |-- 00000000000000000000
  |-- %RETRY%ConsumerGroupB
  | |-- 0
  | | |-- 00000000000000000000
  |-- SCHEDULE_TOPIC_XXXX
  | |-- 2
  | | |-- 00000000000006000000
  | |-- 3
  | | |-- 00000000000006000000
  |-- TopicA
  | |-- 0
  | | |-- 00000000002604000000
  | | |-- 00000000002610000000
  | | |-- 00000000002616000000
  | |-- 1
  | | |-- 00000000002610000000
  | | |-- 00000000002610000000
  |-- TopicB
  | |-- 0
  | | |-- 00000000000732000000
  | |-- 1
  | | |-- 00000000000732000000
  | |-- 2
  | | |-- 00000000000732000000

四、RocketMQ的部署模型

在实际的部署过程中,Broker是实际存储消息的数据节点,Nameserver则是服务发现节点,Producer发送消息到某一个Topic,并给到某个Consumer用于消费的过程中,需要先请求Nameserver拿到这个Topic的路由信息,即Topic在哪些Broker上有,每个Broker上有哪些队列,拿到这些请求后再把消息发送到Broker中;相对的,Consumer在消费的时候,也会经历这个流程。

6.png

补充:

NameServer:

NameServer是一个几乎无状态节点,可集群部署,节点之间无任何信息同步(类似ZK)。

NameServer用于存储Topic、Broker关系信息,功能简单,稳定性高。多个NameServer之间相互没有通信,单台NameServer宕机不影响其他NameServer与集群;即使整个NameServer集群宕机,已经正常工作的Producer,Consumer,Broker仍然能正常工作,但新起的Producer, Consumer,Broker就无法工作。

NameServer压力不会太大,平时主要开销是在维持心跳和提供Topic-Broker的关系数据。但有一点需要注意,Broker向NameServer发心跳时,会带上当前自己所负责的所有Topic信息,如果Topic个数太多(万级别),会导致一次心跳中,就Topic的数据就几十M,网络情况差的话,网络传输失败,心跳失败,导致NameServer误认为Broker心跳失败。

Broker :

Broker 部署相对复杂,Broker分为Master 与 Slave,一个Master可以对应多个 Slave,但是一个Slave只能对应一个Master。

Master 与 Slave 的对应关系通过指定相同的BrokerName,不同的 BrokerId 来定义,BrokerId为0表示Master,非 0 表示 Slave。

Master可以部署多个。每个Broker与NameServer 集群中的所有节点建立长连接,定时注册Topic信息到所有NameServer。

Producer与NameServer集群中的其中一个节点(随机选择)建立长连接,定期从 Name Server 取 Topic 路由信息,并向提供 Topic 服务的 Master 建立长连接,且定时向 Master 发送心跳。

Producer :

Producer 完全无状态,可集群部署。

Producer启动时,也需要指定NameServer的地址,从NameServer集群中选一台建立长连接。如果该NameServer宕机,会自动连其他NameServer。直到有可用的NameServer为止。

Producer每30秒从NameServer获取Topic跟Broker的映射关系,更新到本地内存中。再跟Topic涉及的所有Broker建立长连接,每隔30秒发一次心跳。在Broker端也会每10秒扫描一次当前注册的Producer,如果发现某个Producer超过2分钟都没有发心跳,则断开连接。

Producer发送时,会自动轮询当前所有可发送的broker,一条消息发送成功,下次换另外一个broker发送,以达到消息平均落到所有的broker上。

假如某个Broker宕机,意味生产者最长需要30秒才能感知到。在这期间会向宕机的Broker发送消息。当一条消息发送到某个Broker失败后,会往该broker自动再重发2次,假如还是发送失败,则抛出发送失败异常。业务捕获异常,重新发送即可。客户端里会自动轮询另外一个Broker重新发送,这个对于用户是透明的。

Consumer:

Consumer与NameServer集群中的其中一个节点(随机选择)建立长连接,定期从NameServer取Topic路由信息,并向提供Topic服务的Master、Slave建立长连接,且定时向 Master、Slave发送心跳。

Consumer既可以从Master订阅消息,也可以从 Slave 订阅消息,订阅规则由 Broker 配置决定。

Consumer启动时需要指定NameServer地址,与其中一个NameServer建立长连接。消费者每隔30秒从NameServer获取所有Topic的最新队列情况,这意味着某个Broker如果宕机,客户端最多要30秒才能感知。连接建立后,从NameServer中获取当前消费Topic所涉及的Broker,直连Broker。

Consumer跟Broker是长连接,会每隔30秒发心跳信息到Broker。Broker端每10秒检查一次当前存活的Consumer,若发现某个Consumer 2分钟内没有心跳,就断开与该Consumer的连接,并且向该消费组的其他实例发送通知,触发该Consumer集群的负载均衡。

Consumer有两种模式消费:集群消费,广播消费。

广播消费:每个消费者消费Topic下的所有队列。

集群消费:一个topic可以由同一个ID下所有消费者分担消费。


五、RocketMQ最佳实践总结

Apache RocketMQ 集群搭建(两主两从):https://www.jianshu.com/p/b090138cf52c


如有问题,请留言:)。
如需转载,请注明出处:)。
感觉有帮助,可以点下喜欢:)。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345

推荐阅读更多精彩内容