Is AIC the right criterion?
- For small data and frequentist inference, you should use AICc -- the small sample correction which provides greater penalty for each parameter but approaches AIC as n becomes large. If it makes a difference, you should use it. (I probably should have used it above.)
- For large data and frequentist inference , consider BIC, which is asymptotically consistent while AIC is not (see Hastie et al. 2009, which is available online). AIC typically favors overly-complex models with large n relative to BIC. Note, however, that this is not an issue for prediction, only inference of a true model (if one exists; Sec. 6.4 McElreath 2015).
- For Bayesian models, consider WAIC or LOO (instead of DIC, which has issues with non-Gaussian posteriors McElreath 2015).
- Don't use information criteria for model selection between GLMs with different link functions.
AIC是正确的标准吗?
- 对于小型数据和频率论推断,你应该使用AIC_C -小样本校正功能,而且提供了更大的惩罚每一个参数,但随着n变大方法AIC。 如果它有区别,你应该使用它。 (我可能应该使用它上面。)
- 对于大数据和频率论推断,考虑BIC,这是渐近一致的,而AIC不是(见黑斯蒂等人。2009年,也就是在网上提供)。 AIC通常主张相对于BIC大的N过于复杂的模型。 但是请注意,这不是对预测的问题,只有一个真正的模型的推理(如果存在;二段6.4 McElreath 2015)。
- 对于贝叶斯模型,考虑WAIC或LOO (而不是DIC,DIC有非高斯后验问题 McElreath 2015年)。
-
不要在具有不同链接函数的GLM之间使用信息标准进行模型选择。
from So, you did some GLMs & compared with AIC. Congrats!