A Survey on Deep Learning for Data-driven Soft Sensors
(Qingqiang Sun and Zhiqiang Ge, Senior Member, IEEE)
本文是来自浙江大学葛志强教授团队21年的一篇关于深度学习软测量的综述,文章详细总结了当前深度学习在软测量领域的各项工作以及未来的研究热点及展望。
本博客亦可以作为一篇阅读笔记,更可以说是一篇重点内容的翻译,可以供读者更快的了解目前在软测量领域的各项深度学习的研究工作以及未来的研究热点。文末附上参考文献以供读者对各项工作展开更详细的了解。
数据驱动软测量深度学习调研
摘要
软测量技术在流程工业中得到了广泛的使用,以实现过程监测、质量预测等许多重要应用。随着软硬件技术的发展,工业过程具有了新的特点,导致传统的软测量建模方法性能变差。深度学习作为一种数据驱动的方法,在许多领域以及软测量场景中显示出其巨大的潜力。经过一段时间的发展,特别是过去五年,出现了许多需要调研的新问题。因此,本文首先通过分析深度学习的优点和工业过程的趋势,论证了深度学习对软测量应用的必要性和重要性。接下来,总结和讨论主流深度学习模型、技巧和框架/工具包,以帮助设计人员推动软测量技术的发展。然后,对现有的工作进行了综述和分析,讨论了实际应用中出现的需求和问题。最后,给出了展望和结论。
1.引言
当前,由于信息技术的发展和客户需求的增加,流程工业变得越来越复杂。因此,直接测量和分析关键质量变量的成本和难度都在增加[1-3]。然而,为了监测系统的运行状态,实现过程的顺利控制和提高产品质量,必须尽可能快速、准确地获得那些关键变量或质量指标。
因此,软测量技术是一种以易于测量的辅助变量为输入,以难测量变量为输出的数学模型,在过去的几十年中,它被发展用来快速地估计或预测重要变量。[4]
建立软测量模型的方法主要有三种,即基于机理的方法,基于知识的方法,基于数据驱动的方法。[5]如果详细和准确的过程机理是已知的或者关于过程的丰富经验和知识是可用的,前两种方法可以取得很好的效果。 然而,工业过程的日益复杂使这些先决条件不能再容易地得到满足。 因此,数据驱动建模已成为主流的软测量建模方法。[6,7]
传统的数据驱动软测量建模方法主要包括多种统计推理技术和机器学习技术,例如主成分分析法和回归模型相结合的主成分回归法,偏最小二乘回归,支持向量机和人工神经网络等。[8-12] 在过去的20年里,随着在一些关键问题上的技术突破,具有足够数量的隐藏层或具有足够复杂结构的网络是可用的,这被称为深度学习(DL)技术[13,14]。 由于DL技术,允许由多个处理层组成的计算模型学习具有多个抽象级别的数据表示。 这些方法大大改善了语音识别、目标检测和许多其他领域的最新技术,如药物发现和基因组学[15]。近年来,将深度学习方法应用于软测量的研究也越来越多。从传统的人工智能领域到软测量领域,客观上存在着许多差异。有许多问题需要调查和讨论(包括但不限于以下问题):在软测量场景中是否需要和适合使用深度学习技术?哪些深度学习模型可以用于实际应用?如何将它们应用于解决实际过程中的问题?未来的潜在的研究点是什么?因此,这项工作的动机是尽可能合理地回答这些问题。
论文的其余部分组织如下。第二节讨论了DL的独特优点,并证明了它对软测量建模的必要性。第三节概述了几种典型的DL模型和核心训练技术。然后在第四节中研究了使用DL方法的软测量应用的最新技术。 讨论情况和展望见第五节。最后,这项工作的结论载于第六节。
2. 深度学习对软测量的意义
关于常规方法的详细回顾可参见现在的工作,例如文献[7,16],虽然这些方法已经有许多应用,但它们可能存在一些缺点,如手工制作的特征工程带来的繁重工作量或处理大量数据时的效率低下等。为了证明DL在软测量建模中的意义,应讨论DL的不同优点和工业过程的趋势或特点。
A.深度学习技术的优点
首先,一个具有单个隐藏层的简单网络的结构如图1所示。.它有三个层,即一个输入层、隐藏层和输出层。输入层包含变量下x1到xm和一个常量节点“1”。隐藏层有许多节点,并且每个节点都有一个激活函数。每个节点的特征通过原始输入层的仿射变换和激活的函数变换提取,定义如下公式:
根据普遍逼近理论,如果隐藏层中有足够的节点,则由图1中所示的网络表示的函数。可以近似任何连续函数[17-19]。 此外,使用多层神经元来表示某些功能要简单得多。
与传统的软测量建模方法相比,深度学习有它自己的优势。在这里,我们将它们大致分为三类:基于规则的系统、经典的机器学习和浅层表示学习。它们之间的差异如图2所示,其中绿色方块表示能够从数据中学习信息的组件。[21]
综上所述,与传统算法相比,深度学习技术的优点主要在于(i)没有知识或经验要求的学习表示,以及(ii)充分利用大量的数据来提高性能。总之,根据充分的文献研究和我们最好的知识,得出了工业过程发展的两个主要趋势:(一)它们越来越复杂,不断变化;(二)产生和存储了大量的过程数据。 在这种情况下,第二节讨论的深度学习技术的特点与这两种趋势完全吻合。 首先,深度学习可以避免复杂的特征工程,并自动学习抽象表示(图2)。 其次,深度学习可以充分利用大量的数据,有效地提高建模性能(图3)。 这就是为什么深度学习技术具有重要意义,并将越来越重要的软测量应用。
然后文章介绍了深度学习的各种常规模型框架,例如SAE、RBM、DBN 、CNN等,这里就不再一一赘述。
3.开发DL模型的一般技巧
虽然深度学习具有巨大的潜力,但有效地训练具有满意泛化性能的深度模型可能是非常具有挑战性的。其原因主要在于深层结构引起的过度拟合和梯度消失问题。 为了克服或减轻这些问题,在训练深度模型时,以下几个技巧应该是有帮助的。
正则化
正则化是克服高方差问题,即过拟合的有效工具。一种直接的方法是用参数范数惩罚来规范代价函数,例如[if !msEquation][endif]正则化。当最小化成本函数时,这些参数也会被限制为不太大。
数据集增强
获取更多的数据用于训练机器学习模型是提高其泛化性能的最佳方法。虽然从真实场景中收集大量数据可能不容易,但创建新的假数据对于一些特定的任务是有意义的,例如对象识别 [69]、语音识别[70]。 将噪声引入输入层也可以看作是一种数据增强[71,72]。
早停
训练过程的成本通常先下降,然后随着学习的进一步进行而增加,这意味着发生了过拟合。为了避免这个问题,每次出现更好的验证误差时,都应该保存参数设置,以便在所有训练步骤都完成之后[73],返回性能最佳的点。因此,早期停止策略可以防止参数的过度学习。
稀疏性的表示法
另一种参数惩罚方法是约束激活单元,它将间接地对参数的复杂性施加惩罚。与普通正则化相似,在代价函数中加入了基于隐藏单元激活状态的惩罚项。为了获得相对较小的成本,神经元激活的概率应该尽可能小[74]。其他方法,如KL离散度惩罚或对激活值施加硬约束也被应用。
丢弃法
丢弃法是一种集成式策略。基本原则是删除非输出单元(例如。从基本网络将输出乘以零)形成几个子网络。每个输入单元和隐藏单元都按照一个采样概率包含在内,从而保证子模型的随机性和多样性。集合权值通常是根据子模型[78]的概率来得到的。另一个显著的优点是,对适用的模型或训练过程几乎没有什么限制。但是,如果只有少数数据[79],效果不是很好。
批量标准化
批归一化是一种自适应再参数化方法,旨在更好地训练极深的网络[80]。 训练时,深层网络中隐藏层的参数会不断变化,导致内部协变量移位问题。一般来说,整体分布会逐渐靠近非线性函数值区间的上下限。因此,当进行反向传播时,梯度很容易消失。采用批量归一化,对每个单元的均值和方差进行标准化,以稳定学习,但允许单元之间的关系和单个单元的非线性统计发生变化。
开发深度学习算法的框架
为了更好地实现深度学习算法的发展,有几个开源框架可用,这些框架可能包括最先进的算法或设计良好的底层网络元素,例如, TensorFlow [81], Caffe [82], Theano [83], CNTK [84], Keras [85],Pytorch等。这些平台的比较如表2所示。
总结来说就是pytorch作为近年来新兴起的深度学习框架,其简洁、快捷、易用,并且拥有活跃的社区,越来越得到学术工作者的青睐。
深度学习算法的成功开发实际上是一个高度迭代的过程,可以概括为图8。对于软测量应用,第一步是发现实际工业过程中存在的需求或问题(如半监督学习、动态 建模、缺失数据等。) 试着想出一个值得尝试的新主意。接下来需要做的是用开源框架或工具包对其进行编码。之后,数据被收集并输入到程序中,以获得一个结果,告诉设计者这个特定的算法或配置工作得有多好。基于结果,设计者应该细化思想,改变策略,找到更好的神经网络。 然后重复该过程,迭代改进方案,直至达到理想效果。
为了帮助读者了解最新的进展,并更好地开发高性能的软测量模型,本文综述了基于深度学习技术的应用。对现有的工作进行了介绍和讨论,主要突出了动机、策略和有效性等因素。 以下内容根据各项工作的所属的主流模型展开。
A.基于自编码器(AE)的应用
AE及其变体被广泛用于构建半监督学习的软测量模型和处理工业过程数据缺失问题。此外,结合传统的机器学习算法可以获得优异的性能。
由于AE是一种无监督学习模型,它通常被修改为半监督或监督形式,以完成预测任务。 例如,在[87]中使用变分自动编码器(VAE)建立了半监督概率隐变量回归模型。一种常见的方法是将标签变量的监督引入到编码和解码过程中。在[88]中,提出了一种可变加权SAE(VW-SAE),在预训练时引入每个隐藏层的输入与质量标签之间的线性皮尔逊系数,以便以半监督的方式提取特征。此外,还采用了基于非线性关系的技术,如相互信息[89],以更好地提取特征表示。然而,线性和非线性关系都是人为指定的,可能是不充分的或不合适的。因此,一种相对更智能和自动化的方法是将质量标签的预测损失添加到预训练成本[90]中。此外,还可以采用其他策略来构建隐藏层和标签值之间的连接。 Sun等人使用门控单元测量不同隐藏层中特征的贡献,更好地控制隐藏层与输出层[91]之间的信息流。 此外,在只有少量标记样本和过量未标记样本的半监督场景下,提出了一种考虑数据多样性和结构多样性的双集成学习方法[92]。
数据缺失是工业软测量设计中最常见的问题之一。作为自编码器的一种变体,变分自编码器(VAE)在学习数据分布和处理缺失数据问题方面表现良好。 例如,基于VAE和Wasserstein GAN,提出了一个名为VA-WGAN的生成模型,它可以从工业过程中生成相同分布的真实数据,这是传统回归模型[93]难以实现的。在[94]中,利用VAE为即时建模方法提取每个特征变量的分布,并通过数值案例和工业过程验证了该方法的有效性。此外,作者还提出了一种用于即时软测量应用的输出相关VAE,旨在处理缺失的数据[95],从而丰富了该理论。与前者不同的是,在一种新的软测量框架中使用了两种 VAE,这种框架也侧重于缺失的数据[96]。 第一个被命名为监督深层VAE的设计是为了获得潜在特征的分布,它被用作第二个被称为修改后的无监督深层VAE的先验特征。通过将第一个编码器与第二个解码器相结合构造整个框架,并且在缺失数据情况下效果很好。
在一些案例中,AEs可以通过将其与其他方法相结合或改进其学习策略来更好地工作。 例如,姚等人实现了一个用于无监督特征提取的深度自编码器网络,然后利用极限学习机进行回归任务[97]。 Wang等人采用有限记忆Broyden-Fletcher-Goldfarb-Shanno算法对SAE学习到的权重参数进行优化,然后将提取的特征输入到支持向量回归(SVR)模型中,用于估计空气预热器[98]的转子受损情况。 而不是使用纯数据驱动的模型,Wang等人将一个名为Lab模型的基于知识的模型(KDM)与一个数据驱动模型 (DDM)结合起来,即堆叠自动编码器,实验结果验证了该混合方法优于只使用KDM或DDM[99]。严等人使用了一种改进的梯度下降算法提出了一种基于DAE的方法,与传统浅层学习方法[100]相比是有效的。此外,针对自适应地建模时变过程,提出了一种基于SAE的软测量结构的即时微调框架。
B. 基于受限Boltzmann机的应用
非线性是工业过程中普遍存在的特征。 为此,RBM及其变体特别是DBN,在工业过程建模中通常被用作无监督的非线性特征提取器。预测器可以利用RBM或DBN学习到的特征,SVR和BPNN是两种常见的预测器。例如,为了解决燃煤锅炉过程中多变量之间的高非线性和强相关性问题[102],提出了一种采 用连续RBM(CRBM)和SVR算法的新型深度结构。由Lian等人提出了一项相关工作,利用DBN和SVR与改进的粒子群优化来完成转子热变形预测[103]的任务。在[104]中提出了一种基于DBN和BPNN的软测量模型来预测纯化的对苯二甲酸工业生产过程中的4-羧基-苯丙二酸的浓度。面对非线性系统建模的复杂性和非线性,在[105]中提出了一种基于RBM 的改进BPNN。在这项工作中利用灵敏度分析和互信息理论对BPNN 的结构进行了优化,并利用RBM对参数进行了初始化。然而在[106]中DBN被用来学习BPNN的层次特征,它是为了建模在球磨机生产过程中提取的特征与轧机水平之间的关系而构建的。除了SVR和BPNN之外,极限学习机(ELM)还可以根DBN提取的特征作为预测器。应用此方法实现了无土栽培[107] 营养液组成的测定。
为了克服数据丰富但信息贫乏的问题,RBM可以用于集成学习。例如,郑等人提出了一种将集成策、DBN和 Correntropy核回归集成到一个统一软测量框架中[108]。 同样,集成深度核学习模型是在工业聚合过程中提出的,它采用DBN进行无监督信息提取 [109]。 在另一个案例当中,缺乏标记样本也会导致信息缺乏,这可以通过使用DBN的半监督学习来解决,就像[110] 中提出的工作一样。 在[111]中,针对标记数据稀缺性、计算复杂度降低和无监督特征提取,设计了一种基于DBN的软测量框架。
RBM也有一些其他有趣的应用。 Graziani等人为工厂过程设计了一种基于DBN的软测量系统,以估计未知的测量延迟,而不是质量变量[112]。 另一个基于DBN的模型被应用于处理火焰图像,而不是常见的结构数据,用于工业燃烧过程中的氧含量预测[113]。朱等人 研究了DBN结构在工业聚合过程中软测量应用的选择。 通过与前馈神经网络的比较,基于DBN的方法可以更准确地预测聚合物熔体指数[114]。
C. 基于卷积神经网络的应用
CNNs主要用于处理网格状数据,特别是图像数据。此外,还可以开发它们来捕获工业过程数据或过程信号在频域的局部动态特性。通过处理图像数据,CNN可以被用来构造软测量系统。例如,Horn等人利用CNN提取泡沫浮选测量中的特征,显示出良好的特征提取速度和预测性能[115]。然而,与常见的数据形式相比,图像仍然很少用于软测量的构建。
关于动态问题,袁等人还提出了多通道CNN(MCNN)在工业脱丁烷塔和加氢裂化过程中的软测量应用,可以学习不同变量组合的相互作用和各种局部相关性[116]。此外,王等人 使用两个基于CNN的软传测量模型来处理丰富的过程数据,以保持低复杂度,同时包含其过程动态[117]。 在[118]中提出了一种利用卷积神经网络的软测量系统,它通过从移动窗口中提取时间相关的相关性来预测下一步的测量。
在频域上,CNN可以获得对信号平移、缩放和失真的高不变性。在[119]中,在网络末层利用一对卷积层和最大池层从轧机轴承的振动光谱特征中提取高层次的抽象特征。然后利用ELM学习从提取的特征到磨坊水平的映射。 在航空航天工程领域,提出了一种利用CNN进行部分振动测量的虚拟传感器模型,用于估计结构响应,这对于结构健康监测和损伤检测很重要,但物理传感器在相应的操作条件是有限的[120]。
D. 基于循环神经网络的应用
RNN被广泛用于动态建模,各种变体如LSTM也被应用于实际情况开发了基于RNN的软测量系统来估计具有较强动态特性的变量,如环氧/石墨纤维复合材料的固化[121]、汽车轮胎与地面的接触面积[122]、地铁的室内空气质量(IA Q) [123]、注射成型过程中的熔体流动长度[124]、生物质浓度 [125]、反应精馏塔的产品浓度[126]。
除了基于普通RNN的方法外,LSTM也是软测量应用中的 一种流行模型,由于长期依赖减弱,LSTM可以更深入、更强大。 例如,提出了一种基于LSTM的软测量模型,以应对[127]过程的强非线性和动力学。此外,袁等人提出了一种有监督的LSTM网络,该网络利用输入变量和质量变量来学习动态隐藏状态,该方法在青霉素发酵过程和工业去尿剂柱[128]中得到了有效的应用。 此外,还利用 LSTM网络对污水处理厂氮源组分的含量进行了预测[129]。
还有其他变体是为特定的工业应用而设计的。例如,一个采用批量归一化和丢弃技巧的两流网络结构被设计用来学习各种过程数据的不同特征[130]。 在[131]中,另一种称为时间延迟神经网络(TDNN)的RNN被实现用于理想反应精馏塔的推理状态估计。 此外,Echo状态网(ESN)作为一种RNN,也被用于高密度聚乙烯(HDPE)生产过程和纯化对苯二甲酸(PTA)生产过程中的软测量应用[132]。 利用奇异值分解(SVD),解决了共线性和过拟合问题。 最近,[133]种提出了一种将SAE与双向LSTM(BLSTM)相结合的集成半监督模型。该方法不仅可以提取和利用标记数据和未标记数据中的短暂行为,而且可以考虑质量度量自身中隐藏的时间依赖性。同时,在[134]中提出了基于GRU的鲁棒动态特征自动深度提取方法,并在脱丁烷精馏过程中取得了良好的性能。
半监督建模
在[135]中将流形嵌入集成到深度神经网络(DNN)中,构建了一个半监督框架,其中流形嵌入利用了工业数据之间的局部邻域关系,提高了深度神经网络中未标记数据的利用效率。此外,[136]还提出了一种基于极限学习机的即时半监督软传感器,用多种配方在线估计中的门尼粘度。
动态建模
除了CNN和RNN,还有一些其他的神经网络用于动态建模。Graziani等人。提出了一种基于动态DNN的软测量模型,用于估算炼油厂转化炉装置的辛烷值,并研究了非线性有限输入响应模型[137]。Wang等人提出了一种名为NARX-DNN的动态网络,它可以从不同的方面解释验证数据的质量预测误差,并自动确定历史数据的最合适的延迟[138]。此外,在[139]中还采用动态策略来提高极限学习机的动态捕获性能,并将其与 PLS结合。
数据生成
由于工业过程环境恶劣,直接收集数据可能很困难。因此,[140]中提出了一种基于生成对抗性网络的数据生成方法。
消除冗余
在[141]中,将双最小绝对收缩选择算子(dLASSO)算法集成到多层感知器(MLP)网络中,解决了输入变量冗余和模型结构冗余两个冗余问题。
推断和近似
由于学习能力强,深层神经网络可以用于智能控制目的。例如,[142]中设计了一种基于Levenberg-Marquart和自适应线性网络的软测量模型,并将其应用于多组分精馏过程的推理控制。此外,还利用自适应模糊均值算法进化了一个径向基函数(RBF)神经网络,其目的是逼近一个未知的系统[143]。
现有应用的总结
开发基于DL的新型软测量的目的包括特征提取、解决缺失值问题、动态特征捕获、半监督建模等(如表所示1). 值得注意的是只是详细讨论了软测量领域的现有应用,这并不意味着尚未出现在软测量领域的应用是不可行的。例如,虽然VAE是用 DL处理软测量应用中缺失值问题的主流方法,但基于RBM 和GAN的方法在其他领域也是可行的[144,145]。 为了去设计可行的模型采用了不同的策略,如优化网络结构、改进训练算法、集成不同的算法等。
从以上小节中讨论的应用,可以进一步总结一些要点。 首先,使用DL方法的软测量应用的统计数据可以在图中9看到。根据第四节讨论和引用的总共57条参考资料。 从图(a)可以看出,近年来基于DL理论的算法越来越多,这反映了在实际工业过程建模中对DL模型的需求越来越大。此外,与其他3种主要理论相比,基于CNN的方法应用较少。 这是因为像网格一样的数据,如图像,更多地用于分类,而不是回归任务。此外,虽然AE看起来比其他主要模型简单,但它更容易开发和扩展,因此它也有很大的潜力。
如图(b)所示。基于DL理论的软测量模型在多种场景下构建,包括化工、电力工业、机械制造、航空航天工程等。其中,化工应用占比例最大,约66.7%。
通过进行数值模拟实验(例如[95],[116]等),验证了本调查中介绍的大多数工作的有效性。或使用公开的基准数据集(例如[139]),或通过从实际过程中的建模数据集(例如[93],[94],[95],[110],[116],[123]等)。 最常见的情况是第三种类型,它可以尽可能多地反映真实过程的特征。例如,在化工领域,实际运行数据是从脱丁烷过程[96]、聚合过程[109]、加氢裂化过程[116]中收集的。然而,当将这些软测量应用于真实场景时,需要考虑更详细和具体的因素。
虽然深度学习在许多领域都取得了很大的进步,但要更好地将先进的方法应用于软测量领域,特别是满足实际工业过程中的需求,还有很多工作要做。数据和结构是需要一直考虑的两个最重要的问题。 围绕这两个课题,未来一些热点研究方向应该得到更多的关注。
缺少标记样本
虽然在大数据的趋势下,数据很容易获得,但标记成本仍然非常昂贵。因此,我们总是希望使用较少的标记样本可以训练一个具有良好泛化能力的模型。这个问题的传统解决方法是使用半监督的学习方法,然而未标记数据和标记数据之间越来越多的严重不平衡问题使其不那么令人满意。自监督学习(SSL)是另一种可行的解决方案,是一种无监督策略[146]。与迁移学习不同[32,33],有用的特征表示是从从未标记的输入数据设计的前置任务中学习的(而不是从其他类似的数据集)。 对比方式是SSL最流行的类型之一,在语音、图像、文本和增强学习领域取得了一些巨大的成就[148]。 然而,其软测量应用仍有许多研究和探索工作有待完成。
超参数优化
长期以来,如何优化网络的超参数和结构是研究人员和工程师的一个难题[106,114,141]。 并且这些工作大多需要人工试验。为了避免工作量大和随机性大,元学习理论被提出与研究,这也被称为“学习到学习”[148]。其动机是提供具有像人一样学习能力的机器。元学习不是为特定任务学习单个函数,而是学习一个函数来输出几个子任务的函数。同时,元学习需要许多子任务,每个子任务都有自己的训练集和测试集。经过有效的训练,机器可以拥有优化超参数的能力,并且可以自行选择网络结构。这对多模态和不断变化的过程很有吸引力。
模型可靠性
深度学习方法以端到端的方式学习特征,这增加了工程师或设计师理解他们学到了什么和如何学习的难度。此外,学习过程对数据的依赖增加了数据质量差造成的不准确。 这两个因素都对DL模型的可靠性构成威胁。 因此,提高模型的可靠性是很重要的,模型可视化[149,150]与经验或知识[151]相结合是两种可行的方法。 模型可视化有助于研究人员理解所学知识,而引入经验或知识有助于减少仅仅依赖数据带来的不准确。然而,这两点需要更多实际的工业应用的研究。
分布式并行建模
随着第二节中讨论的工业大数据的趋势,如何从大量数据中有效地建模该过程是一个重要而紧迫的问题。一个可行的解决方案是将原始的深度学习模型转换为分布式和并行建模。通过将一个大的数据集分割成几个小的分布式块,可以同时进行数据处理,这有利于大规模的数据建模[152,153]。然而,到目前为止,还有很长的路要走。
结论
深度学习技术在许多领域包括软测量领域都显示出了它巨大的潜力。为了总结过去,分析现在,展望未来,在本工作中,我们对深度学习理论在软测量领域的应用做出了以下贡献:(i)对深度学习的优点与传统算法的比较以及工业过程的发展趋势进行了详细的讨论,证明了深度学习算法在软测量建模中的必要性和意义;(ii)讨论并总结了主要的DL模型、技巧和框架/工具包,以帮助读者更好地开发基于DL的软传感器;(iii)通过回顾和讨论现有的工作或出版物,分析了实际的应用场景;(iv)对未来工作的可能研究热点进行了研究。
我们希望这篇论文作为一种分类学,也是一篇从大量基于深度学习的软测量的工作中阐明的进展教程,并为社区提供路线图和未来努力的事项的蓝图。
参考文献:
[1] B. Huang, and R. Kadali, Dynamic Modeling, Predictive Control and
Performance Monitoring, Springer London, 2008.
[2] X. Wang, B. Huang, and T. Chen, “Multirate Minimum Variance Control
Design and Control Performance Assessment: A Data-Driven Subspace
Approach,” IEEE. T. Contr. Syst. T., vol. 15, no. 1, pp. 65-74, 2006.
[3] Z. Chen, S. X. Ding, T. Peng, C. Yang, and W. Gui, “Fault Detection for
Non-Gaussian Processes Using Generalized Canonical Correlation
Analysis and Randomized Algorithms,” IEEE. T. Ind. Electron., vol. 65,
no. 2, pp. 1559-1567, 2018.
[4] Y. Jiang, S. Yin, J. Dong, O. Kaynak, “A Review on Soft Sensors for
Monitoring, Control and Optimization of Industrial Processes,” IEEE
Sensors Journal, 2020, doi: 10.1109/JSEN.2020.3033153.
[5] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, “A review of
process fault detection and diagnosis: Part II: Qualitative models and
search strategies,” Computers & Chemical Engineering, vol. 27, no. 3,
pp. 313-326, 2003.
[6] P. Kadlec, B. Gabrys, S. Strandt, “Data-driven soft sensors in the process
industry,” Comput. Chem. Eng. vol. 33, pp. 795-814, 2009.
[7] M. Kano, M. Ogawa, “The state of the art in chemical process control in
Japan: good practice and questionnaire survey,” J. Process Control, vol.
20, pp. 969-982, 2010.
[8] K. Pearson, “LIII. On lines and planes of closest fit to systems of points
in space,” Philosophical Magazine, vol. 2, no. 11, pp. 559-572, 1901.
[9] H. Wold, “Estimation of principal components and related models by
iterative least squares,” Multivar. Anal., Vol. 1, pp. 391-420, 1966.
[10] Q. Jiang, X. Yan, H. Yi and F. Gao, “Data-Driven Batch-End Quality
Modeling and Monitoring Based on Optimized Sparse Partial Least
Squares,” IEEE Transactions on Industrial Electronics, vol. 67, no. 5, pp.
4098-4107, May 2020, doi: 10.1109/TIE.2019.2922941.
[11] W. Yan, H. Shao, X. Wang, “Soft sensing modeling based on support
vector machine and Bayesian model selection,” Comput, Chem. Eng.
vol. 28, pp. 1489-1498, 2004.
[12] K. Desai, Y. Badhe, S.S. Tambe, B.D. Kulkarni, “Soft-sensor
development for fed-batch bioreactors using support vector regression,”
Biochem. Eng. J., vol. 27, pp. 225-239, 2006.
[13] G. Hinton, S. Osindero, Y-W. Teh, “A Fast Learning Algorithm for Deep
Belief Nets,” Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
[14] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” J. Mach. Learn. Res., vol. 9, pp. 249–256,
2010.
[15] Y. LeCun, Y. Bengio, G. Hinton, “Deep learning,” Nature, vol. 521, no.
7553, pp. 436-444, 2015.
[16] F.A.A. Souza, R. Araújo, and J. Mendes, “Review of soft sensor methods
for regression applications,” Chemometrics and Intelligent Laboratory
Systems, vol. 152, pp.69-79, 2016.
[17] K. Hornik, et al. “Multilayer feedforward networks are universal
approximations,” Neural Networks, vol. 2, pp. 359-366, 1989.
[18] G. Cybenko, “Approximation by superpositions of a sigmoidal
function,” Math. Control Signals System, vol. 2, pp. 303-314, 1989.
[19] K. Hornik, “Approximation capabilities of multilayer feedforward
networks,” Neural Networks, vol. 4, pp. 251-257, 1991.
[20] K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Learning for Image
Recognition,” arXiv:1512.03385v1, 2015.
[21] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, vol. 1,
Cambridge, MA, USA: the MIT press, 2016.
[22] C. Grosan, A. Abraham, “Rule-Based Expert Systems,” Intelligent
Systems, vol. 17, pp. 149-185, 2011.
[23] A. Ligęza, Logical Foundations for Rule-based Systems. 2nd edn.
Springer, Heidelberg, 2006.
[24] J. Durkin, Expert Systems: Design and Development. Prentice Hall, New
York, 1994.
[25] C. R. Turner, A. Fuggetta, L. Lavazza, A. L. Wolf, “A conceptual basis
for feature engineering,” Journal of Systems and Software, vol. 49, no. 1,
pp. 3-15, 1999.
[26] F. Nargesian, H. Samulowitz, U. Khurana, E. B. Khalil, D. Turaga,
“Learning Feature Engineering for Classification,” Presented at
Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, Aug. 2017, doi: 10.24963/ijcai.2017/352.
[27] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol.35, no. 8, pp. 1798-1828, 2013.
[28] Andrew Ng, “Scale drives machine learning progress,” in Machine
Learning Yearning, pp. 10-12. [online]. Available:
https://www.deeplearning.ai/machine-learning-yearning/.
[29] S. J. Pan, Q. Yang, “A survey on transfer learning,” IEEE Transactions
on Knowledge and Data Engineering, vol. 22, no.10, pp. 1345-1359,
Oct. 2010.
[30] Y. Bengio, “Deep Learning of Representations for Unsupervised and
Transfer Learning,” Proceedings of ICML workshop on unsupervised
and transfer learning, pp. 17-36, 2012.
[31] W. Shao, Z. Song, and L. Yao, “Soft sensor development for multimode
processes based on semisupervised Gaussian mixture models,”
IFAC-PapersOnLine, vol. 51, no. 18, pp. 614–619, 2018.
[32] F. A. A. Souza and R. Araújo, “Mixture of partial least squares experts
and application in prediction settings with multiple operating modes,”
Chemometrics Intell. Lab. Syst., vol. 130, no. 15, pp. 192–202, 2014.
[33] H. Jin, X. Chen, L. Wang, K. Yang, and L. Wu, “Dual learning-based
online ensemble regression approach for adaptive soft sensor modeling
of non-linear time-varying processes,” Chemometrics Intell. Lab. Syst.,
vol. 151, pp. 228–244, 2016.
[34] M. Kano, and K. Fujiwara, “Virtual sensing technology in process
industries: trends and challenges revealed by recent industrial
applications,” Journal of Chemical Engineering of Japan, 2012, doi:
10.1252/jcej.12we167.
[35] L. X. Yu, “Pharmaceutical Quality by Design: Product and Process
Development, Understanding, and Control,” Pharm Res, vol. 25, pp.
781–791, 2008, doi: 10.1007/s11095-007-9511-1.
[36] S. J. Qin, “Process Data Analytics in the Era of Big Data,” AIChE
Journal, vol. 60, no. 9, pp. 3092-3100, 2014.
[37] N. Stojanovic, M. Dinic, L. Stojanovic, “Big data process analytics for
continuous process improvement in manufacturing,” 2015 IEEE
International Conference on Big Data, 2015, doi:
10.1109/BigData.2015.7363900.
[38] L. Yao, Z. Ge, “Big data quality prediction in the process industry: A
distributed parallel modeling framework,” J. Process Contr., vol. 68, pp.
1-13, 2018.
[39] M. S. Reis, and G. Gins, “Industrial Process Monitoring in the Big
Data/Industry 4.0 Era: from Detection, to Diagnosis, to Prognosis,”
Processes, vol. 5, no. 3, 35, 2017, doi:10.3390/pr5030035.
[40] S. W. Roberts, “Control charts tests based on geometric moving
averages,” Technometrics, vol. 1, pp. 239-250, 1959.
[41] C. A. Lowry, W. H. Woodall, C. W. Champ, C. E. Rigdon, “A
multivariate exponentially weighted moving average control chart,”
Technometrics, vol. 34, pp. 46–53, 1992.
[42] T. Kourti, J. F. MacGregor, “Multivariate SPC methods for process and
product monitoring,” J. Qual. Technol., vol. 28, pp. 409–428, 1996.
[43] M. S. Reis, P. M. Saraiva, “Prediction of profiles in the process
industries,” Ind. Eng. Chem. Res., vol. 51, pp. 4254–4266, 2012.
[44] C. Duchesne, J. J. Liu, J. F. MacGregor, “Multivariate image analysis in
the process industries: A review,” Chemom. Intell. Lab. Syst., vol. 117,
pp. 116-128, 2012.
[45] D. C. Montgomery, C. M. Mastrangelo, “Some statistical process control
methods for autocorrelated data,” J. Qual. Technol., vol. 23, pp. 179–
193, 1991.
[46] T. J. Rato, M. S. Reis, “Advantage of using decorrelated residuals in
dynamic principal component analysis for monitoring large-scale
systems,” Ind. Eng. Chem. Res., vol. 52, pp. 13685–13698, 2013.
[47] G. E. Hinton, and J. L. McClelland, “Learning representations by
recirculation,” In NIPS’ 1987, pp. 358–366, 1988.
[48] D. E. Rumelhar, G. E. Hinton, R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533-536,
1986.
[49] H. Larochelle, I. Lajoie, Y. Bengio, P. A. Manzagol, “Stacked denoising
autoencoders: learning useful representations in a deep network with a
local denoising criterion,” J Mach Learn Res, vol. 11, no. 12, pp.
3371-3408, 2010.
[50] B. Schölkopf, J. Platt, T. Hofmann, “Efficient learning of sparse
representations with an energy-Based model,” Proceedings of advances
in neural information processingsystems, pp. 1137-1144, 2006.
[51] M. A. Ranzato, Y. L. Boureau, Y. Lecun, “Sparse feature learning for
deep belief networks,” Proceedings of international conference on neural
information processing systems, vol. 20, pp. 1185-1192, 2007.
[52] A. Hassanzadeh, A. Kaarna, T. Kauranne, “Unsupervised multi-manifold
classification of hyperspectral remote sensing images with contractive
Autoencoder,” Neurocomputing, vol. 257, pp.67-78.
[53] Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends
in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.
[54] G. E. Hinton, “A practical guide to training restricted Boltzmann
machines,” Neural networks: Tricks of the trade. Springer, Berlin,
Heidelberg, pp. 599-619, 2012.
[55] G. E. Hinton, R. R. Salakhutdinov, “Deep Boltzmann machines,” J Mach
Learn Res, vol. 5, no. 2, pp. 1967-2006, 2009.
[56] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural
information processing systems. 2012.
[57] Y. Zhou, and R. Chellappa, “Computation of optical flow using a neural
network,” IEEE 1988 International Conference on Neural Networks,
1988, doi: 10.1109/ICNN.1988.23914.
[58] Y. LeCun, L. Bottou, Y. Bengio, et al. “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.
[59] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” In Advances in Neural
Information Processing Systems, pp. 1097–1105, 2012.
[60] K. Simonyan, A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
[61] P. J. Werbos, “Backpropagation through time: What it does and how to
do it,” Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, Oct. 1990.
[62] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Transactions on Neural
Networks, vol. 5, no. 2, pp. 157–166, 1994.
[63] R. Pascanu, T. Mikolov, Y. Bengio, “On the difficulty of training
recurrent neural networks,” In Proceedings of International Conference
on Machine Learning, pp. 1310-1318, 2013.
[64] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with LSTM,” Neural computation, vol. 12, no. 10,
pp. 2451–2471, 2000.
[65] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to construct deep
recurrent neural networks,” arXiv preprint arXiv:1312.6026, 2013.
[66] K. Cho, B. V. Merriënboer, C. Gulcehre, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using RNN
encoder-decoder for statistical machine translation,” In Proceedings of
the Empiricial Methods in Natural Language Processing 2014, 2014.
[67] G. Chrupala, A. Kadar, and A. Alishahi, “Learning language through
pictures,” arXiv: 1506.03694, 2015.
[68] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural
networks architectures,” Neural computation, vol. 7, no. 2, pp. 219-269,
1995.
[69] D. M. Montserrat, Q. Lin, J. Allebach, E. J. Delp, “Training object
detection and recognition CNN models using data augmentation,”
Electronic Imaging, vol. 2017, no. 10, pp. 27-36, 2017.
[70] N. Jaitly, and G. E. Hinton, “Vocal tract length perturbation (VTLP)
improves speech recognition,” Proc. ICML Workshop on Deep Learning
for Audio, Speech and Language, Vol. 117, 2013.
[71] P. Vincent, H. Larochelle, Y. Bengio, et al. “Extracting and composing
robust features with denoising autoencoders,” Proceedings of the 25th
international conference on Machine learning, pp. 1096-1103, 2008.
[72] B. Poole, J. Sohl-Dickstein, and S. Ganguli, “Analyzing noise in
autoencoders and deep networks,” arXiv preprint arXiv: 1406.1831,
2014.
[73] R. Caruana, S. Lawrence, and C. L. Giles, “Overfitting in neural nets:
Backpropagation, conjugate gradient, and early stopping,” Advances in
neural information processing systems, 2001.
[74] Z. Zhang, Y. Xu, J. Yang, X. Li, D. Zhang, “A survey of sparse
representation: algorithms and applications,” IEEE access, vol. 3, pp.
[75] H. Larochelle, Y. Bengio, “Classification using discriminative restricted
Boltzmann machines,” Proceedings of the 25th international conference
on Machine learning, pp. 536-543, 2008.
[76] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” In Proceedings of the 27 th Annual Asilomar
Conference on Signals, Systems, and Computers, pp. 40–44, 1993.
[77] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, “Dropout: A simple way to prevent neural networks from
overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–
1958, 2014.
[78] G. E. Hinton, N. Srivastava, A. Krizhevsky, et al. “Improving neural
networks by preventing co-adaptation of feature detectors,” arXiv
preprint arXiv:1207.0580, 2012.
[79] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, “Dropout: A simple way to prevent neural networks from
overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–
1958, 2014.
[80] S. Ioffe, C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.
[81] M. Abadi, P. Barham, J. Chen, et al. “Tensorflow: A system for
large-scale machine learning,” 12th Symposium on Operating Systems
Design and Implementation, pp.265-283, 2016.
[82] Y. Jia, E. Shelhamer, J. Donahue, et al. “Caffe: Convolutional
architecture for fast feature embedding,” Proceedings of the 22nd ACM
international conference on Multimedia, pp. 675-678, 2014.
[83] F. Bastien, P. Lamblin, R. Pascanu, et al. “Theano: new features and
speed improvements,” arXiv preprint arXiv:1211.5590, 2012.
[84] F. Seide, A. Agarwal, “CNTK: Microsoft's open-source deep-learning
toolkit,” Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 2135-2135,
2016.
[85] A. Gulli, S. Pal, Deep learning with Keras. Packt Publishing Ltd, 2017.
[86] A. Paszke, S. Gross, F. Massa, et al. “Pytorch: An imperative style,
high-performance deep learning library,” Advances in Neural
Information Processing Systems, pp. 8026-8037, 2019.
[87] B. Shen, L. Yao, Z. Ge, “Nonlinear probabilistic latent variable
regression models for soft sensor application: From shallow to deep
structure,” Control Engineering Practice, vol. 94, 2020, doi:
10.1016/j.conengprac.2019.104198.
[88] X. Yuan, B. Huang, Y. Wang, et al. “Deep learning-based feature
representation and its application for soft sensor modeling with
variable-wise weighted SAE,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 7, pp. 3235-3243, 2018.
[89] X. Yan, J. Wang, and Q. Jiang, “Deep relevant representation learning for
soft sensing,” Information Sciences, vol. 514, pp. 263-274, 2020.
[90] X. Yuan, J. Zhou, B. Huang, et al. “Hierarchical quality-relevant feature
representation for soft sensor modeling: a novel deep learning strategy,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 6, pp.
3721-3730, 2019.
[91] Q. Sun, Z. Ge, “Gated Stacked Target-Related Autoencoder: A Novel
Deep Feature Extraction and Layerwise Ensemble Method for Industrial
Soft Sensor Application,” IEEE transactions on cybernetics, 2020, doi:
10.1109/TCYB.2020.3010331.
[92] Q. Sun, Z. Ge, “Deep Learning for Industrial KPI Prediction: When
Ensemble Learning Meets Semi-Supervised Data,” IEEE Transactions
on Industrial Informatics, 2020, doi: 10.1109/TII.2020.2969709.
[93] X. Wang, H. Liu, “Data supplement for a soft sensor using a new
generative model based on a variational autoencoder and Wasserstein
GAN,” Journal of Process Control, vol. 85, pp. 91-99, 2020.
[94] F. Guo, R. Xie, B. Huang, “A deep learning just-in-time modeling
approach for soft sensor based on variational autoencoder,”
Chemometrics and Intelligent Laboratory Systems, vol. 197, 2020, doi:
10.1016/j.chemolab.2019.103922.
[95] F. Guo, W. Bai, B. Huang, “Output-relevant Variational autoencoder for
Just-in-time soft sensor modeling with missing data,” Journal of Process
Control, 2020, 92: 90-97.
[96] R. Xie, N. M. Jan, K. Hao, et al. “Supervised Variational Autoencoders
for Soft Sensor Modeling with Missing Data,” IEEE Transactions on
Industrial Informatics, vol. 16, no. 4, pp. 2820-2828, 2019.
[97] L. Yao, Z. Ge, “Deep learning of semisupervised process data with
hierarchical extreme learning machine and soft sensor application,”
IEEE Transactions on Industrial Electronics, vol. 65, no. 2, pp.
[98] X. Wang, H. Liu, “Soft sensor based on stacked auto-encoder deep
neural network for air preheater rotor deformation prediction,”
Advanced Engineering Informatics, vol. 36, pp. 112-119, 2018.
[99] X. Wang and H. Liu, “A Knowledge- and Data-Driven Soft Sensor Based
on Deep Learning for Predicting the Deformation of an Air Preheater
Rotor,” in IEEE Access, vol. 7, pp. 159651-159660, 2019.
[100] W. Yan, D. Tang and Y. Lin, “A Data-Driven Soft Sensor Modeling
Method Based on Deep Learning and its Application,” in IEEE
Transactions on Industrial Electronics, vol. 64, no. 5, pp. 4237-4245,
May 2017, doi: 10.1109/TIE.2016.2622668.
[101] Y. Wu, D. Liu, X. Yuan and Y. Wang, “A just-in-time fine-tuning
framework for deep learning of SAE in adaptive data-driven modeling of
time-varying industrial processes,” IEEE Sensors Journal, doi:
10.1109/JSEN.2020.3025805.
[102] W. Fan, F. Si, S. Ren, et al. “Integration of continuous restricted
Boltzmann machine and SVR in NOx emissions prediction of a
tangential firing boiler,” Chemometrics and Intelligent Laboratory
Systems, vol. 195, 2019, doi: 10.1016/j.chemolab.2019.103870.
[103] P. Lian, H. Liu, X. Wang, et al. “Soft sensor based on DBN-IPSO-SVR
approach for rotor thermal deformation prediction of rotary
air-preheater,”
Measurement, vol. 165, 2020, doi:
10.1016/j.measurement.2020.108109.
[104] R. Liu, Z. Rong, B. Jiang, Z. Pang and C. Tang, “Soft Sensor of 4-CBA
Concentration Using Deep Belief Networks with Continuous Restricted
Boltzmann Machine,” 2018 5th IEEE International Conference on Cloud
Computing and Intelligence Systems (CCIS), Nanjing, China, pp.
421-424, 2018, doi: 10.1109/CCIS.2018.8691166.
[105] J. Qiao, L. Wang, “Nonlinear system modeling and application based on
restricted Boltzmann machine and improved BP neural network,”
Applied Intelligence, 2020, doi: 10.1007/s10489-019-01614-1.
[106] M. Lu, Y. Kang, X. Han and G. Yan, “Soft sensor modeling of mill level
based on Deep Belief Network,” The 26th Chinese Control and Decision
Conference (2014 CCDC), Changsha, pp. 189-193, 2014, doi:
10.1109/CCDC.2014.6852142.
[107] X. Wang, W. Hu, K. Li, L. Song and L. Song, “Modeling of Soft Sensor
Based on DBN-ELM and Its Application in Measurement of Nutrient
Solution Composition for Soilless Culture,”2018 IEEE International
Conference of Safety Produce Informatization (IICSPI), Chongqing,
China, pp. 93-97, 2018, doi: 10.1109/IICSPI.2018.8690373.
[108] S. Zheng, K. Liu, Y. Xu, et al. “Robust soft sensor with deep kernel
learning for quality prediction in rubber mixing processes,” Sensors, vol.
20, no. 3, 2020, doi: 10.3390/s20030695.
[109] Y. Liu, C. Yang, Z. Gao, et al. “Ensemble deep kernel learning with
application to quality prediction in industrial polymerization processes,”
Chemometrics and Intelligent Laboratory Systems, vol. 174, pp. 15-21,
2018.
[110] C. Shang C, F. Yang, D. Huang, et al. “Data-driven soft sensor
development based on deep learning technique,” Journal of Process
Control, vol. 24, no. 3, pp. 223-233, 2014.
[111] S. Graziani, and M. G. Xibilia, “Deep Learning for Soft Sensor Design,”
Development and Analysis of Deep Learning Architectures. Springer,
Cham, pp. 31-59, 2020.
[112] S. Graziani and M. G. Xibilia, “Design of a Soft Sensor for an Industrial
Plant with Unknown Delay by Using Deep Learning,” 2019 IEEE
International Instrumentation and Measurement Technology Conference
(I2MTC), Auckland, New Zealand, pp. 1-6, 2019, doi:
10.1109/I2MTC.2019.8827074.
[113] Y. Liu, Y. Fan, J. Chen, “Flame images for oxygen content prediction of
combustion systems using DBN,” Energy & Fuels, vol. 31, no. 8, pp.
8776-8783, 2017.
[114] C. H. Zhu, J. Zhang, “Developing Soft Sensors for Polymer Melt Index
in an Industrial Polymerization Process Using Deep Belief Networks,”
International Journal of Automation and Computing, vol. 17, no. 1, pp.
44-54, 2020.
[115] Z.C. Horn, et al. “Performance of convolutional neural networks for
feature extraction in froth flotation sensing,” IFAC-PapersOnLine, vol.
50, no. 2, pp. 13-18, 2017.
[116] X. Yuan, S. Qi, Y. Shardt, et al. “Soft sensor model for dynamic
processes based on multichannel convolutional neural network,”
Chemometrics and Intelligent Laboratory Systems, 2020: 104050.
[117] K. Wang, C. Shang, L. Liu, et al. “Dynamic soft sensor development
based on convolutional neural networks,” Industrial & Engineering
Chemistry Research, vol. 58, no. 26, pp. 11521-11531, 2019.
[118] W. Zhu, et al. “Deep learning based soft sensor and its application on a
pyrolysis reactor for compositions predictions of gas phase
components,” Computer Aided Chemical Engineering, Elsevier, Vol. 44,
pp. 2245-2250, 2018.
[119] J. Wei, L. Guo, X. Xu and G. Yan, “Soft sensor modeling of mill level
based on convolutional neural network,” The 27th Chinese Control and
Decision Conference (2015 CCDC), Qingdao, pp. 4738-4743, 2015, doi:
10.1109/CCDC.2015.7162762.
[120] S. Sun, Y. He, S. Zhou, et al. “A data-driven response virtual sensor
technique with partial vibration measurements using convolutional
neural network,” Sensors, vol. 17, no. 12, 2017, doi:
10.3390/s17122888.
[121] H.B. Su, L.T. Fan, J.R. Schlup, “Monitoring the process of curing of
epoxy/graphite fiber composites with a recurrent neural network as a soft
sensor,” Engineering Applications of Artificial Intelligence, vol. 11, no.
2, pp. 293-306, 1998.
[122] C.A. Duchanoy, M.A. Moreno-Armendáriz, L. Urbina, et al. “A novel
recurrent neural network soft sensor via a differential evolution training
algorithm for the tire contact patch,” Neurocomputing, vol. 235, pp.
71-82, 2017.
[123] J. Loy-Benitez, S.K. Heo, C.K. Yoo, “Soft sensor validation for
monitoring and resilient control of sequential subway indoor air quality
through memory-gated recurrent neural networks-based autoencoders,”
Control Engineering Practice, vol. 97: 104330, 2020.
[124] X. Chen, F. Gao, G. Chen, “A soft-sensor development for
melt-flow-length measurement during injection mold filling,” Materials
Science and Engineering: A, vol. 384, no. 1-2, pp. 245-254, 2004.
[125] L.Z. Chen, S.K. Nguang, X.M. Li, et al. “Soft sensors for on-line
biomass measurements,” Bioprocess and Biosystems Engineering, vol.
26, no. 3, pp. 191-195, 2004.
[126] G. Kataria, K. Singh, “Recurrent neural network based soft sensor for
monitoring and controlling a reactive distillation column,” Chemical
Product and Process Modeling, vol. 13, no. 3, 2017, doi:
10.1515/cppm-2017-0044.
[127] W. Ke, D. Huang, F. Yang and Y. Jiang, “Soft sensor development and
applications based on LSTM in deep neural networks,” 2017 IEEE
Symposium Series on Computational Intelligence (SSCI), Honolulu, HI,
pp. 1-6, 2017, doi: 10.1109/SSCI.2017.8280954.
[128] X. Yuan, L. Li and Y. Wang, “Nonlinear Dynamic Soft Sensor Modeling
with Supervised Long Short-Term Memory Network,” in IEEE
Transactions on Industrial Informatics, vol. 16, no. 5, pp. 3168-3176,
May 2020, doi: 10.1109/TII.2019.2902129.
[129] I. Pisa, I. Santín, J.L. Vicario, et al. “ANN-based soft sensor to predict
effluent violations in wastewater treatment plants,” Sensors, vol. 19, no.
6, 2019: 1280.
[130] R. Xie, K. Hao, B. Huang, L. Chen and X. Cai, “Data-Driven Modeling
Based on Two-Stream λ Gated Recurrent Unit Network with Soft Sensor
Application,” in IEEE Transactions on Industrial Electronics, vol. 67, no.
8, pp. 7034-7043, Aug. 2020, doi: 10.1109/TIE.2019.2927197.
[131] S.R. V. Raghavan, T.K. Radhakrishnan, K. Srinivasan, “Soft sensor
based composition estimation and controller design for an ideal reactive
distillation column,” ISA transactions, vol. 50, no. 1, pp. 61-70, 2011.
[132] Y.L. He, Y. Tian, Y. Xu, et al. “Novel soft sensor development using echo
state network integrated with singular value decomposition: Application
to complex chemical processes,” Chemometrics and Intelligent
Laboratory Systems, vol. 200, 2020: 103981, doi:
10.1016/j.chemolab.2020.103981.
[133] X. Yin, Z. Niu, Z. He, et al. “Ensemble deep learning based
semi-supervised soft sensor modeling method and its application on
quality prediction for coal preparation process,” Advanced Engineering
Informatics, vol. 46, 2020: 101136.
[134] X. Zhang and Z. Ge, “Automatic Deep Extraction of Robust Dynamic
Features for Industrial Big Data Modeling and Soft Sensor Application,”
in IEEE Transactions on Industrial Informatics, vol. 16, no. 7, pp.
4456-4467, July 2020, doi: 10.1109/TII.2019.2945411.
[135] W. Yan, R. Xu, K. Wang, et al. “Soft Sensor Modeling Method Based on
Semisupervised Deep Learning and Its Application to Wastewater
Treatment Plant,” Industrial & Engineering Chemistry Research, vol. 59,
no. 10, pp.4589-4601, 2020.
[136] W. Zheng, Y. Liu, Z. Gao, et al. “Just-in-time semi-supervised soft sensor
for quality prediction in industrial rubber mixers,” Chemometrics and
Intelligent Laboratory Systems, vol.180, pp. 36-41, 2018.
[137] S. Graziani, M.G. Xibilia, “Deep structures for a reformer unit soft
sensor,” 2018 IEEE 16th International Conference on Industrial
Informatics (INDIN). IEEE, pp. 927-932, 2018.
[138] K. Wang, C. Shang, F. Yang, Y. Jiang and D. Huang, “Automatic
hyper-parameter tuning for soft sensor modeling based on dynamic deep
neural network,” 2017 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), Banff, AB, pp. 989-994, 2017, doi:
10.1109/SMC.2017.8122739.
[139] Y. He, Y. Xu, and Q. Zhu, “Soft-sensing model development using
PLSR-based dynamic extreme learning machine with an enhanced
hidden layer,” Chemometrics and Intelligent Laboratory Systems, vol.
154, pp. 101-111, 2016.
[140] X. Wang, “Data Preprocessing for Soft Sensor Using Generative
Adversarial Networks,” 2018 15th International Conference on Control,
Automation, Robotics and Vision (ICARCV), Singapore, pp. 1355-1360,
2018, doi: 10.1109/ICARCV.2018.8581249.
[141] Y. Fan, B. Tao, Y. Zheng and S. Jang, “A Data-Driven Soft Sensor Based
on Multilayer Perceptron Neural Network with a Double LASSO
Approach,” in IEEE Transactions on Instrumentation and Measurement,
vol. 69, no. 7, pp. 3972-3979, July 2020, doi:
10.1109/TIM.2019.2947126.
[142] A. Rani, V. Singh, J.R.P. Gupta, “Development of soft sensor for neural
network based control of distillation column,” ISA transactions, vol. 52,
no. 3, pp. 438-449, 2013.
[143] A. Alexandridis, “Evolving RBF neural networks for adaptive
soft-sensor design,” International journal of neural systems, vol. 23, no.
6, 2013: 1350029.
[144] M.D. Zeiler, et al. “Modeling pigeon behavior using a Conditional
Restricted Boltzmann Machine.” ESANN, 2009.
[145] Y. Luo, et al. “Multivariate time series imputation with generative
adversarial networks,” Advances in Neural Information Processing
Systems, 2018.
[146] L. Jing and Y. Tian, “Self-supervised Visual Feature Learning with Deep
Neural Networks: A Survey,” in IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2020, doi: 10.1109/TPAMI.2020.2992393.
[147] A. Oord, Y. Li, O. Vinyals, “Representation learning with contrastive
predictive coding,” arXiv preprint arXiv: 1807.03748, 2018.
[148] C. Finn, P. Abbeel, S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” arXiv preprint arXiv:1703.03400, 2017.
[149] L. Maaten, G. Hinton, Visualizing data using t-SNE,” Journal of machine
learning research, no. 9, pp. 2579-2605, Nov. 2008.
[150] M.D. Zeiler, R. Fergus, “Visualizing and understanding convolutional
networks,” European conference on computer vision. Springer, Cham,
pp. 818-833, 2014.
[151] S. Kabir, R. U. Islam, M. S. Hossain, et al. “An Integrated Approach of
Belief Rule Base and Deep Learning to Predict Air Pollution.” Sensors,
vol. 20, no. 7: 1956, 2020.
[152] Q. Jiang, S. Yan, H. Cheng and X. Yan, “Local-Global Modeling and
Distributed Computing Framework for Nonlinear Plant-Wide Process
Monitoring with Industrial Big Data,” IEEE Transactions on Neural
Networks and Learning Systems, doi: 10.1109/TNNLS.2020.2985223.
[153] Z. Yang, Z. Ge, “Monitoring and Prediction of Big Process Data with
Deep Latent Variable Models and Parallel Computing,” Journal of
Process Control, vol. 92, pp. 19-34, 2020.