大语言模型六种微调方法

在深度学习的应用中,模型微调(fine-tuning)是一个非常重要的过程,它是指在一个预先训练好的模型上针对特定的任务进行参数调整。常见的微调方法有:Adapter Tuning、LORA、Prefix-Tuning、Prompt Tuning、P-tuning、P-tuning v2,文章将分两次介绍这几种微调方法。

一、Adapter Tuning

1.1 原理

设计了Adapter 结构,将其嵌入 Transformer 的结构里面,在训练时,固定住原来预训练模型的参数不变,只对新增的 Adapter 结构进行微调。同时为了保证训练的高效性(也就是尽可能少的引入更多参数),他们将 Adapter 设计为这样的结构:

  • 首先是一个 down-project 层将高维度特征映射到低维特征

  • 然后过一个非线形层之后,再用一个 up-project 结构将低维特征映射回原来的高维特征

  • 同时也设计了 skip-connection 结构,确保了在最差的情况下能够退化为identity(类似残差结构)

1.2 效果

能够在只额外对增加的 3.6% 参数规模(相比原来预训练模型的参数量)的情况下取得和Full-Finetuning 接近的效果(GLUE指标在0.4%以内)。

1.3意义与遗留问题

首次提出针对 BERT 的 PEFT微调方式,拉开了 PEFT 研究的序幕。

遗留问题:增加了模型层数,引入了额外的推理延迟。

二、LORA

2.1 原理

LoRA 允许我们通过优化适应过程中密集层变化的秩分解矩阵,来间接训练神经网络中的一些密集层,同时保持预先训练的权重不变。


  • 在原始 PLM (Pre-trained Language Model) 旁边增加一个旁路,做一个降维再升维的操作,来模拟所谓的intrinsic rank

  • 训练的时候固定 PLM 的参数,只训练降维矩阵 A 与升维矩阵 B 。而模型的输入输出维度不变,输出时将 BA 与 PLM 的参数叠加。

  • 用随机高斯分布初始化 A ,用 0 矩阵初始化 B ,保证训练的开始此旁路矩阵依然是 0 矩阵。

2.2效果

LORA 相比其它微调方法,增加参数量不会导致性能的下降。

性能上与全参数微调持平甚至超过。

2.3意义与遗留问题

基于大模型的内在低秩特性,增加旁路矩阵来模拟全参数微调,LoRA 将现在的各种大模型通过轻量微调变成各个不同领域的专业模型。

GPT 的本质是对训练数据的有效压缩,从而发现数据内部的逻辑与联系,LoRA 的思想与之有相通之处,原模型虽大,但起核心作用的参数是低秩的,通过增加旁路,达到四两拨千斤的效果。

LORA 已经被 HuggingFace 集成在了 PEFT 代码库里。

三、Prefix-Tuning

3.1原理

与Full-finetuning 更新所有参数的方式不同,该方法是在输入 token 之前构造一段任务相关的 virtual tokens 作为 Prefix,然后训练的时候只更新 Prefix 部分的参数,而 Transformer 中的其他部分参数固定。


同时,为了防止直接更新 Prefix 的参数导致训练不稳定的情况,他们在 Prefix 层前面加了 MLP 结构(相当于将Prefix 分解为更小维度的 Input 与 MLP 的组合后输出的结果),训练完成后,只保留 Prefix 的参数。

3.2 效果

表明Prefix-tuning能用更少的参数达到较有竞争力的结果。在Low-data阶段(训练样本数较少), prefix-tuning相比较fine-tuning更有优势。

3.3 意义与遗留问题

遗留问题:难于训练,且预留给 Prompt 的序列挤占了下游任务的输入序列空间,影响模型性能。

Prompt Tuning

原理

Prefix Tuning 的简化版本,只在输入层加入 prompt tokens,并不需要加入 MLP 进行调整来解决难训练的问题,主要在 T5 预训练模型上做实验。

固定预训练参数,为每一个任务额外添加一个或多个 embedding,之后拼接 query 正常输入 LLM,并只训练这些 embedding。左图为单任务全参数微调,右图为 Prompt tuning。

效果

似乎只要预训练模型足够强大,其他的一切都不是问题。作者也做实验说明随着预训练模型参数量的增加,Prompt Tuning的方法会逼近 Fine-tune 的结果。

意义与遗留问题

该方法可以看作是 Prefix Tuning 的简化版本,Prompt 是人为构造的“显式”的提示,并且无法更新参数,而Prefix 则是可以学习的“隐式”的提示。

遗留问题:由人工设计Prompt,自然语言提示本身十分脆弱(如下图所示,选择不同的Prompt对下游任务的性能影响较大),而且从优化角度无法达到最优。

P-tuning

原理

Prefix Tuning 的简化版本,只在输入层加入 prompt tokens,并不需要加入 MLP 进行调整来解决难训练的问题,主要在 T5 预训练模型上做实验。


固定预训练参数,为每一个任务额外添加一个或多个 embedding,之后拼接 query 正常输入 LLM,并只训练这些 embedding。左图为单任务全参数微调,右图为 Prompt tuning。

效果

  • 使用P-tuning,可以让相似代销的GPT2实现比bert模型相当的甚至更好的结果,这个发现颠覆普遍认为的——双向模型比单向模型在NLU任务中表现的更好。

  • P-tuning给了一种在有限算力下调用大型预训练模型的思路。

意义与遗留问题

遗留问题:Prompt Tuning和P-tuning这两种方法都是在预训练模型参数规模够足够大时,才能达到和Fine-tuning类似的效果,而参数规模较小时效果则很差,且在sequence tagging任务上表现都很差。

P-tuning v2

原理

相比 Prompt Tuning 和 P-tuning 的方法, P-tuning v2 方法在多层加入了 Prompts tokens 作为输入,带来两个方面的好处:带来更多可学习的参数、足够 parameter-efficient,同时加入到更深层结构中的 Prompt 能给模型预测带来更直接的影响。

v1 到 v2 的可视化:蓝色部分为参数冻结,橙色部分为可训练部分。


效果

  • 不同预训练模型大小下的表现,在小模型下取得与 Full-finetuning 相近的结果,并远远优于 P-Tuning。

  • 不同任务下的 P-Tuning v2 效果都很好,而 P-Tuning 和 Prompt Learning 效果不好;同时,采用多任务学习的方式能在多数任务上取得最好的结果。

遗留问题

很容易导致旧知识遗忘,微调之后的模型,在之前的问题上表现明显变差。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342

推荐阅读更多精彩内容