You want to build a house on an empty land which reaches all buildings in the shortest amount of distance. You can only move up, down, left and right. You are given a 2D grid of values 0, 1 or 2, where:
- Each 0 marks an empty land which you can pass by freely.
- Each 1 marks a building which you cannot pass through.
- Each 2 marks an obstacle which you cannot pass through.
For example, given three buildings at (0,0), (0,4), (2,2), and an obstacle at (0,2):
1 - 0 - 2 - 0 - 1
| | | | |
0 - 0 - 0 - 0 - 0
| | | | |
0 - 0 - 1 - 0 - 0
The point (1,2) is an ideal empty land to build a house, as the total travel distance of 3+3+1=7 is minimal. So return 7.
Note:
There will be at least one building. If it is not possible to build such house according to the above rules, return -1.
一刷
思路: 通过BFS, 以building为起点计算出每个empty space到所有building的距离,然后从其中取出最小的即为满足要求的点。
class Solution {
class Tuple{
int x;
int y;
int dist;
Tuple(int x, int y, int dist){
this.x = x;
this.y = y;
this.dist = dist;
}
}
int[][] dirs = {{1, 0},{-1, 0},{0, 1},{0, -1}};
public int shortestDistance(int[][] grid) {
int m = grid.length, n = grid[0].length;
List<Tuple> building = new ArrayList<>();
for(int i=0; i<m; i++){
for(int j=0; j<n; j++){
if(grid[i][j] == 1){
building.add(new Tuple(i, j, 0));
grid[i][j] = -grid[i][j];
}
}
}
//BFS
int[][] dist = new int[m][n];
for(int i=0; i<building.size(); i++){
bfs(building.get(i), i,grid, dist, m, n);
}
//find the minimum
int res = Integer.MAX_VALUE;
for(int i=0; i<m; i++){
for(int j=0; j<n; j++){
if(grid[i][j] == building.size())
res = Math.min(res, dist[i][j]);
}
}
return res;
}
private void bfs(Tuple root, int k,int[][] grid, int[][] dist, int m, int n){
Queue<Tuple> queue = new ArrayDeque<>();
queue.add(root);
while(!queue.isEmpty()){
Tuple cur = queue.poll();
dist[cur.x][cur.y] += cur.dist;
for(int[] dir : dirs){
int x = cur.x + dir[0];
int y = cur.y + dir[0];
if(x>=0 && y>=0 && x<m && y<n && grid[x][y] == k){//避免重复加入, 对于同一个building, 只加入一次。
grid[x][y]++;
queue.add(new Tuple(x, y, cur.dist+1));
}
}
}
}
}